Контроль лазерного излучения. Труд-Эксперт.Управление. Определения, обозначения, величины и единицы измерений

Лазерное излучение как вредный фактор производственной среды

Лазерное излучение - это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Слово «лазер» - аббревиатура, образованная из начальных букв английской фразы Light Amplification by Stimulated Emission of Radiation (усиление света с помощью индуцированного излучения). Следовательно, лазер (оптический квантовый генератор) - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.


Источник фото: shutterstock.com .

Лазерная установка включает активную (лазерную) среду с оптическим резонатором, источник энергии ее возбуждения и, как правило, систему охлаждения. За счет монохроматичности лазерного луча и его малой расходимости (высокой степени коллиминированности) создаются исключительно высокие энергетические экспозиции, позволяющие получить локальный термоэффект. Это является основанием для использования лазерных установок при обработке материалов (резание, сверление, поверхностная закалка и др.), в хирургии и т.д.


Лазерное излучение (способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять это свойство для целей локации, навигации, связи и т. д. Путем подбора тех или иных веществ в качестве активной среды лазер может индуцировать излучение практически на всех длинах волн, начиная с ультрафиолетовых и кончая длинноволновыми инфракрасными. Наибольшее распространение в промышленности получили лазеры, генерирующие электромагнитные излучения с длиной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ


Действие ЛИ (далее по тексту - ЛИ) на человека весьма сложно. Оно зависит от параметров ЛИ, прежде всего от длины волны, мощности (энергии) излу-чения, длительности воздействия, частоты следования импульсов, размеров облучаемой области («размерный эффект») и анатомо-физиологических осо-бенностей облучаемой ткани (глаз, кожа). Поскольку органические молеку-лы, из которых состоит биологическая ткань, имеют широкий спектр абсор-бируемых частот, то нет оснований считать, что монохроматичность ЛИ мо-жет создавать какие-либо специфические эффекты при взаимодействии с тканью.


Пространственная когерентность также не меняет существенно меха-низма повреждений излучением, так как явление теплопроводности в тканях и присущие глазу постоянные мелкие движения разрушают интерференци-онную картину уже при длительности воздействия, превышающей несколь-ко микросекунд. Таким образом, ЛИ пропускается и поглощается биотканя-ми по тем же законам, что и некогерентное, и не вызывает в тканях каких-либо специфических эффектов.



Источник публикации: shutterstock.com .

Энергия ЛИ, поглощенная тканями, преобразуется в другие виды энер-гии - тепловую, механическую, энергию фотохимических процессов, что может вызывать ряд эффектов: тепловой, ударный, светового давления и пр. ЛИ представляет опасность для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38 - 0,7 мкм) и ближнего инфракрасного (0,75 - 1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18 - 0,38 мкм) и дальнее инфракрасное (более 1,4 мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужку, хрусталик.


Достигая сетчатки, ЛИ фо-кусируется преломляющей системой глаза, при этом плотность мощности на сетчатке увеличивается в 1000 - 10 000 раз по сравнению с плотностью мощ-ности на роговице. Короткие импульсы (0,1 с - 10-14 с), которые генерируют лазеры, способны вызвать повреждение органа зрения за значительно более короткий промежуток времени, чем тот, который необходим для срабатыва-ния защитных физиологических механизмов (мигательный рефлекс 0,1 с).

Вторым критическим органом к действию ЛИ являются кожные покровы. Взаимодействие лазерного излучения с кожным покровом зависит от длины волны и пигментации кожи. Отражающая способность кожного покрова в видимой области спектра высокая. ЛИ дальней инфракрасной области на-чинает сильно поглощаться кожными покровами, поскольку это излучение активно поглощается водой, которая составляет 80% содержимого боль-шинства тканей, возникает опасность возникновения ожогов кожи.

Хроническое воздействие низкоэнергетического (на уровне или менее ПДУ ЛИ) рассеянного излучения может приводить к развитию неспецифических сдвигов в состоянии здоровья лиц, обслуживающих лазеры. При этом оно является своеобразным фактором риска развития невротических состоя-ний и сердечно-сосудистых расстройств. Наиболее характерными клиниче-скими синдромами, обнаруживаемыми у работающих с лазерами, являются астенический, астеновегетативный и вегетососудистая дистония.

НОРМИРОВАНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Научно обоснованы два подхода к нормированию ЛИ: первый - по повреж-дающим эффектам тканей или органов, возникающим непосредственно в месте облучения; второй - на основе выявляемых функциональных и мор-фологических изменений ряда систем и органов, не подвергающихся непо-средственному воздействию. Гигиеническое нормирование основывается на критериях биологическо-го действия, обусловленного в первую очередь областью электромагнитного спектра. В соответствии с этим диапазон ЛИ разделен на ряд областей:


- от 0,18 до 0,38 мкм - ультрафиолетовая область;
- от 0,38 до 0,75 мкм - видимая область;
- от 0,75 до 1,4 мкм - ближняя инфракрасная область;
- свыше 1,4 мкм - дальняя инфракрасная область.

В основу установления величины ПДУ положен принцип определения минимальных «пороговых» повреждений в облучаемых тканях (сетчатка, ро-говица глаза, кожа), обнаруживаемых современными методами исследова-ния во время или после воздействия ЛИ. Нормируемыми параметрами яв-ляются энергетическая экспозиция Н (Дж х (м/100)) и облученность Е (Вт x (м/100)), а также энергия W (Дж) и мощность Р (Вт).

Данные экспериментальных и клинико-физиологических исследований свидетельствуют о превалирующем значении общих неспецифических реак-ций организма в ответ на хроническое воздействие низкоэнергетических уров-ней ЛИ по сравнению с местными локальными изменениями со стороны органа зрения и кожи. При этом ЛИ видимой области спектра вызывает сдвиги в функционировании эндокринной и иммунной систем, центральной и периферической нервной системы, белкового, углеводного и липидного обменов. ЛИ с длиной волны 0,514 мкм приводит к изменениям в деятель-ности симпатоадреналовых и гипофиз-надпочечниковых систем.

Длительное хроническое действие ЛИ длиной волны 1,06 мкм вызывает вегетососудистые нарушения. Практически все исследователи, изучавшие состояние здо-ровья лиц, обслуживающих лазеры, подчеркивают более высокую частоту обнаружения у них астенических и вегетативно-сосудистых расстройств. Следовательно, низкоэнергетическое ЛИ при хроническом действии высту-пает как фактор риска развития патологии, что и определяет необходимость учета этого фактора в гигиенических нормативах.


Первые ПДУ ЛИ в России для отдельных длин волн были установлены в 1972 г., а в 1981 г. введены в действие первые санитарные нормы и прави-ла. В США существует стандарт ANSI - Z 136. Разработан также стандарт Международной электротехнической комиссии (МЭК) - публикация 825. От-личительной особенностью отечественного документа по сравнению с зарубеж-ными является регламентация значений ПДУ с учетом не только повреждаю-щих эффектов глаз и кожи, но и функциональных изменений в организме.

Широкий диапазон длин волн, разнообразие параметров ЛИ и вызывае-мых биологических эффектов затрудняют задачу обоснования гигиенических нормативов. К тому же экспериментальная и особенно клиническая провер-ка требуют длительного времени и средств. Поэтому для решения задач по уточнению и разработке ПДУ ЛИ используют математическое моделирова-ние. Это позволяет существенно уменьшить объем экспериментальных ис-следований на лабораторных животных. При создании математических мо-делей учитываются характер распределения энергии и абсорбционные ха-рактеристики облучаемой ткани.

Метод математического моделирования основных физических процессов (термический и гидродинамические эффекты, лазерный пробой и др.), приво-дящих к деструкции тканей глазного дна при воздействии ЛИ видимого и ближ-него инфракрасного диапазонов с длительностью импульсов от 1 до 10-12 с, был использован при определении и уточнении ПДУ ЛИ, вошедших в по-следнюю редакцию «Санитарных норм и правил устройства и эксплуатации лазеров» СНиП № 5804-91 (далее по тексту - Правил № 5804-91, прим. ред. ), которые разработаны на основании результатов научных исследований и учета основных положений следующих документов:


- Санитарные нормы и правила устройства и эксплуатации лазеров № 2392-81;
- Стандарт Международной электротехнической комиссии (МЭК), пуб-ликация 825, издание первое, 1984 - «Радиационная безопасность лазерных изделий, классификация оборудования, требования и руководство для по-требителей»;
- изменения к стандарту МЭК - публикация 825 (1987).

Тот факт, что эти нормы в настоящее время подлежат применению, засвидетельствован Письмом Роспотребнадзора от 16.05.2007 № 0100/4961-07-32. В нем приведен Перечень основных действующих нормативных и методических документов по гигиене труда, а также сказано следующее: в соответствии с законодательством Российской Федерации на территории Российской Федерации действуют санитарные правила, нормы и гигиенические нормативы, утвержденные, в частности, Минздравом СССР, в части, не противоречащей санитарному законодательству Российской Федерации. Указанные документы действуют впредь до отмены либо принятия новых нормативных правовых актов взамен существующих.

Правила № 5804-91 устанавливают предельно допустимые уровни (ПДУ) лазерного излучения при различных условиях воздействия на человека, классификацию лазеров по степени опасности генерируемого ими излучения, а также требования:


- к устройству и эксплуатации лазеров;
- к производственным помещениям, размещению оборудования и организации рабочих мест;
- к персоналу;
- к состоянию производственной среды;
- к применению средств защиты;
- к медицинскому контролю.

Следует иметь в виду, что значения ПДУ опасных и вредных производственных факторов на рабочем месте, оборудованном лазерной техникой, регулируются также ГОСТами, СНиПами, СН и иными документами, которые перечислены в Приложении 1 к Правилам № 5804-91. Однако многие из этих документов утратили силу или заменены новыми нормативами. Как уже говорилось выше, биологическое воздействие лазерного излучения на организм зависит от длины волны излучения, длительности импульса (воздействия), частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Механизм взаимодействия излучения с тканями может быть тепловым, фотохимическим, ударно-акустическим и др. Классификация лазеров по степени опасности генерируемого излучения приведена в разделе 4 Правил № 5804-91. Класс лазера определяется с учетом его мощности и ПДУ при однократном воздействии генерируемого излучения. В Правилах упоминаются четыре класса опасности генерируемого излучения (см. таблицу ниже).


Классы опасности генерируемого лазерами излучения


Класс
лазера
Опасно Безопасно Примечание
I - Для глаз и кожи -
II
При облучении кожи
или глаз
коллимированным
пучком
При облучении кожи
или глаз диффузно
отраженным излучением
-
III
При облучении кожи
или глаз
коллимированным
пучком и облучении
глаз диффузно
отраженным
излучением
на расстоянии 10 см
от отражающей
поверхности

При облучении кожи
диффузно отраженным
излучением
Класс
распространяется
только на лазеры,
генерирующие
излучение
в спектральном
диапазоне II
IV
При облучении глаз
или кожи диффузно
отраженным
излучением
на расстоянии 10 см
от отражающей
поверхности
- -

Классификацию лазеров осуществляет предприятие-изготовитель. Оно использует расчетный метод, основанный на анализе выходных характеристик излучения. Пример расчета приведен в разделе «Контроль уровней опасных и вредных факторов при работе с лазерами» Правил № 5804-91. В этом разделе есть специальная таблица, в которой отражена зависимость опасных и вредных факторов от класса лазера (ГОСТ 12.1.040).


ТРЕБОВАНИЯ К МЕТОДАМ, СРЕДСТВАМ ИЗМЕРЕНИЙ И КОНТРОЛЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Дозиметрией ЛИ называют комплекс методов определения значений пар метров лазерного излучения в заданной точке пространства с целью выявления степени опасности и вредности его для организма человека. Лазерная дозиметрия включает два раздела:

- расчетная, или теоретическая дозиметрия (рассматривает методы расчета параметров ЛИ в зоне возможного нахождения операторов и приемы вычисления степени его опасности);
- экспериментальная дозиметрия (рассматривает методы и средства непосредственного измерения параметров ЛИ в заданной точке пространства).


Средства измерений, предназначенные для дозиметрического контре называются лазерными дозиметрами. Дозиметрический контроль приобретает особое значение для оценки отраженных и рассеянных излучений, когда расчетные методы лазерной дозиметрии, основанные на данных выходных характеристик лазерных установок, дают весьма приближенные значения уровней ЛИ в заданной точке контроля.

Использование расчетных методов диктуется отсутствием возможности провести измерение параметров ЛИ для всего разнообразия лазерной техники. Расчетный метод лазерной дозимет-рии позволяет оценить степень опасности излучения в заданной точке про-странства, используя в расчетах паспортные данные. Метод удобен для работ с редко повторяющимися кратковременными импульсами излучения, когда ограничена возможность измерения максимального значения экспозиции, определения лазерно-опасных зон, классификации лазеров по степени опас-ности генерируемого ими излучения.

Методы дозиметрического контроля установлены в «Методических указа-ниях для органов и учреждений санитарно-эпидемиологических служб по проведению дозиметрического контроля и гигиенической оценки лазерного излучения» № 5309-90, а также частично рассмотрены в Правилах № 5804-91.

В основе методов лазерной дозиметрии лежит принцип наибольшего рис-ка, в соответствии с которым оценка степени опасности должна проводиться для наихудших с точки зрения биологического воздействия условий облуче-ния, т.е. измерение уровней лазерного облучения следует проводить при ра-боте лазера в режиме максимальной отдачи мощности (энергии), определен-ной условиями эксплуатации. В процессе поиска и наведения измеритель-ного прибора на объект излучения должно быть найдено такое положение, при котором регистрируются максимальные уровни ЛИ. При работе лазера в импульсно-периодическом режиме измеряют энергетические характерис-тики максимального импульса серии.




При гигиенической оценке лазерных установок требуется измерять не па-раметры излучения на выходе, а интенсивность облучения критических орга-нов человека (глаза, кожа), влияющую на степень биологического действия. Эти измерения проводят в конкретных точках (зонах), в которых программой лазерной установки определены наличие обслуживающего персонала и уров-ни отраженного или рассеянного ЛИ невозможно снизить до нуля.

Пределы измерений дозиметров определяются значениями ПДУ и техни-ческими возможностями современной фотометрической аппаратуры. В Рос-сии разработаны специальные средства измерений для дозиметрического контроля ЛИ — лазерные дозиметры. Они отличаются высокой универсаль-ностью, заключающейся в возможности контроля как направленного, так и рассеянного непрерывного, моноимпульсного и импульсно-периодического излучения большинства применяемых на практике лазерных установок.

Лазерный дозиметр ИЛД-2М (ИЛД-2) обеспечивает измерение парамет-ров лазерного излучения в спектральных диапазонах 0,49 - 1,15 и 2 - 11 мкм. ИЛД-2М позволяет измерять энергию (W) и энергетическую экспозицию (Н) от моноимпульсного и импульсно-периодического излучения, мощность (Р) и облученность (Е) от непрерывного лазерного излучения. К недостаткам при-бора ИЛД-2М следует отнести сравнительно большие габариты и массу. Для производственных исследований более пригодны портативные лазерные дозиметры ЛД-4 и «ЛАДИН», которые обеспечивают измерение отраженного и рассеянного лазерного излучения в спектральном диапазоне 0,2 - 20 мкм.


Наличие других опасных и вредных производственных факторов в значи-тельной степени определяется классом опасности лазера. Конт-роль их осуществляется в соответствии с действующими нормативно-мето-дическими документами.

ПРОФИЛАКТИКА ВРЕДНОГО ДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ



Защиту ЛИ осуществляют техническими, организационными и лечебно-профилактическими методами и средствами.

К организационно-техническим методам относятся:

- выбор, планировка и внутренняя отделка помещений;
- рациональное размещение лазерных технологических установок;
- порядок обслуживания установок;
- использование минимального уровня излучения для достижения пос-тавленной цели;
- организация рабочего места;
- применение средств защиты;
- ограничение времени воздействия излучения;
- назначение и инструктаж лиц, ответственных за организацию и прове-дение работ;
- ограничение допуска к проведению работ;
- организация надзора за режимом работ;
- четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;
- инструктаж, плакаты;
- обучение персонала.

Санитарно-гигиенические и лечебно-профилактические методы вклю-чают:

- контроль за уровнями опасных и вредных факторов на рабочих местах;
- контроль за прохождением персоналом предварительных и периодиче-ских медицинских осмотров.

Производственные помещения, в которых эксплуатируются лазеры, долж-ны отвечать требованиям действующих санитарных норм и правил. Лазерные установки размещают таким образом, чтобы уровни излучения на рабочих местах были минимальными.

Средства защиты от ЛИ должны обеспечивать предотвращение воздейст-вия или снижение величины излучения до уровня, не превышающего допус-тимый. По характеру применения средства защиты подразделяются на сред-ства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ).

Надежные и эффективные средства защиты способствуют повышению без-опасности труда, снижают производственный травматизм и профессиональ-ную заболеваемость. К СКЗ от ЛИ относятся ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др. СИЗ от лазерного из-лучения включают защитные очки, щитки, маски и др. Средства защиты применяются с учетом длины волны ЛИ, класса, типа, режима ра-боты лазерной установки, характера выполняемой работы.


СКЗ должны предусматриваться на стадии проектирования и монтажа лазеров (лазерных установок), при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производить-ся в зависимости от класса лазера (лазерной установки), интенсивности из-лучения в рабочей зоне, характера выполняемой работы. Показатели защит-ных свойств средств защиты не должны снижаться под воздействием других опасных и вредных факторов (вибрации, температуры и т.д.). Конструкция средств защиты должна обеспечивать возможность смены основных элемен-тов (светофильтров, экранов, смотровых стекол и пр.).

Средства индивидуальной защиты глаз и лица (защитные очки и щитки), снижающие интенсивность ЛИ до ПДУ, должны применяться только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.

При работе с лазерами должны применяться только такие средства защи-ты, на которые имеется нормативно-техническая документация, утвержден-ная в установленном порядке.



МОТ ПРЕДСТАВЛЯЕТ МЕТОДИЧЕСКОЕ ПОСОБИЕ

«ИСПОЛЬЗОВАНИЕ ЛАЗЕРОВ НА РАБОЧЕМ МЕСТЕ.
ПРАКТИЧЕСКОЕ РУКОВОДСТВО»

Эта книга является одной из публикаций серии практических руководств по производственным опасностям, возникающим в результате воздействия неионизирующей радиации (НИР), подготовленным в сотрудничестве с Международным комитетом по неионизирующей радиации (МКНР) Международной ассоциации по радиационной защите (MAРЗ) в качестве части Международной программы МОТ по улучшению производственных условий (МПУПУ).

Цель этой книги состоит в том, чтобы обеспечить базовое руководство по производственным условиям и процедурам, которые приведут к формированию более высоких требований по технике безопасности для всех, кто занимается производством, обслуживанием и эксплуатацией лазерной техники. Книга предназначена, в частности, для компетентных органов, работодателей и рабочих, а также для лиц, которые несут ответственность за технику безопасности и гигиену труда.


Источник публикации: shutterstock.com .


В ней рассматриваются следующие темы: характеристики лазерного излучения; биологическое действие и последствия для здоровья; воздействие лазерного излучения в производственных условиях и его последствия; оценка опасности; использование инструментов и методы измерений; максимально допустимые уровни воздействия и стандарты безопасности; контроль и защита от воздействия лазерного излучения; правила организации контроля и надзора. Особое внимание уделяется мерам защиты от лазерного излучения.

Публикация подготовлена рабочей группой МАРЗ/МКНР под руководством доктора Д.Х. СЛИНЕЙ (D.H. Sliney), в которую вошли доктора Б. БОСНЯКОВИЧ (B. Bosnjakovic), Л.А. КУРТ (L.A. Court), А.Ф. МАККИНЛЕЙ (A.F. McKinlay) и Л.Д. СЗАБО (L.D. Szabo). Эта книга является результатом совместной деятельности МОТ-МАРЗ/МКНР и публикуется МОТ от имени этих двух организаций.

СПИСОК ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ


1. Измеров Н.Ф., Суворов Г.А. Физические факторы производственной и природной среды. Гигиеническая оценка и контроль. - М.: Медицина, 2003. - 560 с.
2. Пантелеева Е. Правила эксплуатации лазерной техники // Бюджетные учреждения здравоохранения: бухгалтерский учет и налогообложение, № 11, 2009. С. 15-23.
3. Электронный ресурс - www.ilo.org .

Скачать документ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ
СОЮЗА ССР

СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА

ЛАЗЕРЫ

МЕТОДЫ ДОЗИМЕТРИЧЕСКОГО КОНТРОЛЯ
ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

ГОСТ 12.1.031-81

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ
КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Срок действия с 01.01.82

Настоящий стандарт устанавливает методы измерений параметров лазерного излучения в диапазоне длин волн 0,2 ? 20 мкм в заданной точке пространства с целью определения степени опасности излучения для организма человека.


Стандарт обязателен для всех министерств и ведомств СССР, разрабатывающих и эксплуатирующих лазеры.

Стандарт следует применять совместно с ГОСТ 12.1.040-83.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Сущность заключается в измерении параметров излучения в заданной точке пространства и сравнении полученных значений средней энергетической освещенности от непрерывного излучения и энергетической экспозиции от импульсного (импульсно-модулированного излучения со значениями соответствующих предельно допустимых уровней (ПДУ), установленными «Санитарными нормами и правилами устройства и эксплуатации лазеров» (М.: Минздрав СССР, 1982).

Значения ПДУ определяют с учетом спектральных и пространственно-временных параметров лазерного излучения в заданной точке контроля.


1.2. Стандарт устанавливает методы дозиметрического контроля непрерывного, импульсного и импульсно-модулированного лазерного излучения в диапазоне длин волн 0,25 ? 0,4; 0,4 ? 1,4 и 1,4 ? 20 мкм как для излучения с неизвестными параметрами в заданном точке контроля, так и для излучения с известными спектральными и пространственно-временными параметрами в заданной точке контроля (далее - излучение с известными параметрами).

Для диапазона длин волн 0,4 ? 1,4 мкм стандарт устанавливает методы дозиметрического контроля коллимированного и рассеянного излучения.

1.3. При дозиметрическом контроле лазерного излучения с известными параметрами измеряют:

облученность Е е;

энергетическую экспозицию Н е.


частоту повторения импульсов излучения;

длительность воздействия непрерывного и импульсно-модулированного излучения;

угловой размер источника излучения по отношению к заданной точке контроля (для рассеянного излучения в диапазоне длин волн 0,4 ? 1,4 мкм).

1.1 - 1.4. (Измененная редакция, Изм. № 1).


1.6. Пояснения к терминам, используемым в настоящем стандарте и не содержащимся в ГОСТ 15093-75, приведены в справочном приложении 1.

2. АППАРАТУРА

2.1. Для дозиметрического контроля лазерного излучения следует применять переносные дозиметры лазерного излучения, позволяющие определять облученность F e и энергетическую экспозицию Н е в широком спектральном, динамическом, временном и частотном диапазонах.

(Измененная редакция, Изм. № 1).

2.2. Дозиметры лазерного излучения должны соответствовать требованиям ГОСТ 24469-80.

2.3. Условия эксплуатации дозиметров лазерного излучения - по 3-й группе ГОСТ 24469-80.


2.4. В зависимости от числа измеряемых параметров лазерного излучения дозиметры подразделяют на две группы:

I - дозиметры, предназначенные для определения облученности Е е; энергетической экспозиции Н е;

II - дозиметры, предназначенные для определения в точке контроля облученности Е е, энергетической экспозиции Н е, длины волны излучения, длительности импульсов излучения, длительности воздействия лазерного излучения, частоты повторения импульсов излучения.

При измерении энергетической экспозиции от непрерывного лазерного излучения длительностью более 0,25 с допускается пользоваться косвенным методом измерения, при котором измеряют дозиметром облученность Е е в виде функции от времени воздействия излучения на дозиметр и определяют результат измерения, как интеграл по времени воздействия от полученной функции.

Структурные схемы дозиметром I и II групп приведены в приложении 2.


(Измененная редакция, Изм. № 1).

2.5. В обоснованных случаях вместо дозиметра группы II допускается применение комплекса средств измерений отдельных параметров лазерного излучения.

2.6. Дозиметры должны быть отградуированы в единицах энергетической экспозиции Н е (Дж/см 2) или энергии Q и (Дж). Допускается дополнительно градуировать дозиметры в единицах облученности Е е (Вт/см 2) или средней мощности Р ср (Вт).

2.7. При градуировке дозиметра в единицах Е е (Н е) на лицевой панели прибора должна быть указана площадь входной диафрагмы S гр приемного устройства, при которой проводилась его градуировка.

2.8. Облученность Е H е) в заданной точке контроля по заданному направлению визирования для дозиметров, отградуированных в единицах мощности (энергии), определяют как частное от деления значения измерений мощности (энергии) излучения на значение площади отверстия диафрагмы S д, установленной на входе приемного устройства.


2.9. Облученность Е е (энергетическая экспозиция Н е) в заданной точке контроля по заданному направлению визирования для дозиметров, градуированных в единицах облученност) определяют по формулам:

Е е = К д Е ? е; (1)

Н е = К д Н ? е, (2)

где К д = S гр /S д;

Е ? е и Н ? е - соответствующие отсчеты по шкале дозиметра.

2.6 - 2.9. (Измененная редакция, Изм. № 1).

2.10. Диаметр отверстия входной диафрагмы приемного устройства не должен превышать 0,2 диаметра падающего на него пучка излучения и должен быть измерен с погрешностью не более 2 %. Действительное значение площади и диаметра отверстия диафрагмы должно быть указано на ее передней или боковой поверхности.

2.11. Верхняя граница диапазонов измерений дозиметров, градуированных в единицах энергетической экспозиции или облученности, должна быть не менее, а нижняя - не более указанных в табл. 1.

Таблица 1

2.12. Верхняя граница измерений дозиметров, градуированных в единицах энергии (средней мощности), должна быть не менее, а нижняя - не более указанных в табл. 2.

Таблица 2

2.13. При измерении энергии (энергетической экспозиции) импульсного и импульсно-модулированного лазерного излучения дозиметры должны работать в диапазоне длительностей импульсов и при максимальной частоте повторения импульсов, указанных в табл. 3.

Таблица 3

2.10 - 2.13. (Измененная редакция, Изм. № 1).

2.14. В обоснованных случаях, с разрешения Госстандарта, по согласованию с Минздравом СССР, допускается перекрытие указанных в табл. 1 - 3 диапазонов несколькими дозиметрами, а также применение для дозиметрического контроля специальных средств измерений.

2.15. Пределы допускаемой основной относительной погрешности дозиметров при измерении энергетической экспозиции облученности по абсолютной величине не должны превышать значений, указанных в табл. 4.

Таблица 4

2.16. Пределы допускаемой основной относительной погрешности дозиметров при измерении энергии (средней мощности) по абсолютной величине не должны превышать значений, указанных в табл. 5.

Таблица 5

2.17. Пределы допускаемой основной относительной погрешности дозиметров группы II при измерении спектральных и пространственно-временных параметров лазерного излучения не должны превышать значений, указанных в табл. 6.

Таблица 6

2.15 - 2.17. (Измененная редакция, Изм. № 1).

2.18. Для определения угловых координат оси визирования дозиметры должны быть снабжены углоповоротным и углоотсчетным устройствами, закрепляемыми на штативе.

2.19. Углоповоротное устройство должно обеспечивать возможность наведения дозиметра на исследуемый излучатель в пределах ± 180° в горизонтальной плоскости и в пределах (не менее) от минус 10 до плюс 40° - в вертикальной плоскости.

Погрешность наведения - не более ± 30?.

2.20. Расстояние от точки контроля до отражающей поверхности, а также от излучателя до отражающей поверхности следует измерить измерительной рулеткой по ГОСТ 7502-89 или дальномерным устройством дозиметра (при его наличии).

2.21. Угловые координаты точек контроля на плане следует измерять геодезическим транспортиром по ГОСТ 13494-80.

3. ПОДГОТОВКА К КОНТРОЛЮ

3.1. На плане помещения, в котором проводят работы с лазером (или на плане открытой площади), намечают точки контроля и выбирают нулевой ориентир.

3.2. При помощи геодезического транспортира определяют на плане угловые координаты точек контроля относительно нулевого ориентира.

3.3. По имеющимся исходным данным о параметрах исследуемого лазерного излучения выбирают метод дозиметрического контроля и тип дозиметра (группы I и II).

3.4. Для каждой заданной точки контроля подготавливают протокол дозиметрического контроля, форма которого приведена в рекомендуемом приложении 3.

3.5. В протокол дозиметрического контроля записывают следующие данные:

место проведения контроля (организация, подразделение);

дату проведения контроля;

тип и заводской номер используемого дозиметра лазерного излучения;

нулевой ориентир (какой предмет на плане принят за начало угловых координат);

угловые координаты точки контроля на плане;

режим излучения (подчеркнуть нужное);

значения параметров излучения?, ? и, t , F и (при контроле лазерного излучения с известными параметрами);

диаметр d д и площадь S д выбранной входной диафрагмы;

температуру окружающей среды.

3.6. Дозиметр лазерного излучения устанавливают в точке контроля и подготавливают его к работе в соответствии с утвержденной в установленном порядке документацией на применяемый дозиметр.

3.7. При подготовке к контролю непрерывного лазерного излучения подключают к дозиметру внешний регистрирующий прибор (например, самописец) для записи изменения значений средней мощности Р ср (облученности Е е) при изменении времени наблюдения t . Подготавливают внешний регистрирующий прибор к работе в соответствии с его эксплуатационной документацией.

(Введен дополнительно, Изм. № 1).

4. ПРОВЕДЕНИЕ КОНТРОЛЯ

4.1. Проведение дозиметрического контроля лазерного излучения с известными параметрами в спектральных диапазонах 0,2 ? 0,4 и 1,4 ? 20 мкм

4.1.1. Установленный в заданной точке контроля дозиметр с приемным устройством соответствующего спектрального диапазона включают в рабочий режим средней мощности Р ср (облученности Е е) или энергии Q e (энергетической экспозиции Н е).

4.1, 4.1.1. (Измененная редакция, Изм. № 1).

4.1.2. Устанавливают на приемное устройство входную диафрагму с диаметром отверстия, отвечающим требованиям (п. 2.10).

4.1.3. Направляют отверстие входной диафрагмы приемного устройства дозиметра на возможный источник излучения (лазер или любую отражающую поверхность).

4.1.4. Поворачивая приемное устройство в двух плоскостях, находят положение, при котором показания дозиметра максимальны.

Направление нормали к плоскости входного отверстия приемного устройства в этом положении принимают за направление излучения с наибольшей интенсивностью.

4.1.5. Угловые координаты оси визирования относительно нулевого ориентира при максимальном показании дозиметра записывают в протокол дозиметрического контроля (форма 1 приложения 3).

4.1.6. При контроле непрерывного лазерного излучения записывают с помощью внешнего регистрирующего прибора изменение значений средней мощности Р ср (облученности Е е) в течение времени воздействия? в излучения на заданную точку контроля. В процессе записи снимают в любой момент времени t 0 показание дозиметра Р 0 () и фиксируют соответствующее значение () на внешнем регистрирующем приборе. Заносят значения Р 0 , ( , ) в протокол дозиметрического контроля.

Строят график изменения значений Р ср (Е е), откладывая по оси абсцисс время t в секундах, а по оси ординат значения N Р (t ): или N E (t ) в безразмерных единицах (N Р (t ), N E (t ) - показания внешнего регистрирующего прибора в момент времени t ).

Определяют энергетическую экспозицию в заданной точке контроля по формулам:

(3)

для дозиметров, отградуированных в единицах мощности (Вт);

(4)

для дозиметров, градуированных в единицах облученности (Вт/см 2).

Значения или определяют, находя площадь под кривой N Р (t ) или N E (t ) на соответствующем графике.

Полученное значение Н е и значение? в заносят в таблицу протокола дозиметрического контроля. График функции N Р (t ) или N E (t ) прикладывают к протоколу дозиметрического контроля.

4.1.7. При контроле импульсно-модулированного лазерного излучения снимают показания дозиметра в режиме измерения энергии (или энергетической экспозиции) по каналу Q и (Н e) в течение 10 мин с интервалом не более 1 мин. Результаты измерений заносят в таблицу протокола дозиметрического контроля и находят наибольшее показание ().

При контроле импульсного лазерного излучения снимают показания дозиметра для десяти импульсов излучения при условии, что общее время измерений не превышает 15 мин. Если в течение 15 мин на дозиметр поступает менее десяти импульсов, максимальное значение показаний выбирают из числа проведенных измерений.

По максимальному показанию дозиметра () определяют энергетическую экспозицию Н е в заданной точке контроля по формулам:

для дозиметров, градуированных в единицах энергии (Дж);

для дозиметров, градуированных в единицах энергетической экспозиции (Дж/см 2).

4.1.6, 4.1.7. (Измененная редакция, Изм. № 1).

4.2. Проведение дозиметрического контроля лазерного излучения с неизвестными характеристиками в спектральном диапазоне 0,2 ? 0,4 и 1,4 ? 20 мкм

4.2.1. Устанавливают на приемное устройство дозиметра группы II входную диафрагму с площадью отверстия, равной 1 см 2 .

4.2.2. Проводят операции, указанные в пп. 4.1.3 - 4.1.5.

4.2.3. Действуя в соответствии с утвержденной в установленном порядке документацией на применяемый дозиметр, измеряют:

длину волны излучения? и длительность воздействия излучения t в течение отрезка времени наиболее вероятного постоянного нахождения людей в точке контроля - при непрерывном излучении;

длину волны излучения?, длительность импульса излучения? и - при импульсном излучении;

длину волны излучения?, длительность импульса излучения? и, частоту повторения импульсов F и и длительность воздействия излучения t в течение отрезка времени наиболее вероятного постоянного нахождения людей в точке контроля - при импульсно-модулированном излучении.

Измеренные значения параметров излучения записывают в протокол дозиметрического контроля.

4.2.4. Действуя в соответствии с п. 4.1.6 или п. 4.1.7, определяют облученность Е Н е излучения.

(Измененная редакция, Изм. № 1).

4.3. Проведение дозиметрического контроля коллимированного лазерного излучения в диапазоне длин волн 0,4 ? 1,4 мкм

4.3.1. В заданной точке контроля устанавливают дозиметр с соответствующим приемным устройством.

4.3.2. Устанавливают на приемное устройство входную диафрагму с диаметром отверстия, отвечающим требованиям п. 2.10 - в случае излучения с известными параметрами или площадью отверстия, равной 1 см 2 - в случае излучения с неизвестными параметрами.

4.3.3. В соответствии с методикой, изложенной в пп. 4.1.3 ? 4.1.5, определяют угловые координаты оси визирования относительно нулевого ориентира и записывают их в протокол дозиметрического контроля (форма 2 приложения 3).

4.3.4. При контроле лазерного излучения с неизвестными параметрами действуют в соответствии с п. 4.2.3.

4.3.5. В соответствии с п. 4.1.6 или п. 4.1.7 определяют облученность Е е или энергетическую экспозицию Н е излучения.

(Измененная редакция, Изм. № 1).

4.4. Проведение дозиметрического контроля рассеянного лазерного излучения с известными параметрами в спектральном диапазоне 0,4 ? 1,4 мкм

4.4.1. В заданной точке контроля устанавливают дозиметр с приемным устройством соответствующего спектрального диапазона и включают в рабочий режим Р ср (Е е) или Q и (Н e).

(Измененная редакция, Изм. № 1).

4.4.2. В соответствии с методикой, изложенной в пп. 4.1.2 - 4.1.5, определяют угловые координаты оси визирования относительно нулевого ориентира и записывают их в протокол дозиметрического контроля (форма 2 приложения 3).

4.4.3. Измерительной рулеткой (или по плану) измеряют расстояние l л от рассеивающей поверхности до лазера.

4.4.4. Вычисляют значения характерных размеров пятна засветки на рассеивающей поверхности и диаметр эквивалентного ему круглого пятна d п по формулам:

(7)

(8)

где а п - большая полуось эллипса, ограничивающего пятно засветки на рассеивающей поверхности, см;

b п - малая полуось эллипса, ограничивающего пятно засветки на рассеивающей поверхности, см;

d л - диаметр пучка излучения на выходе лазера, определенный по уровню 1/е 2 из паспортных данных, см (при нормировании d л по уровню 1/е значение d л уменьшается в 2,718 раза);

l л - измеренное расстояние от лазера до рассеивающей поверхности, см;

Угол между осью пучка, падающего на рассеивающую поверхность, и направлением нормали к поверхности, определенный на плане при помощи геодезического транспортира;

Угловая расходимость излучения лазера, определенная по уровню 1/l 2 из паспортных данных, рад.

Полученное значение d п записывают в протокол дозиметрического контроля.

(Измененная редакция, Изм. № 1).

4.4.5. Измерительной рулеткой или дальномерным устройством дозиметра измеряют расстояние l от точки контроля до рассеивающей поверхности.

4.4.6. По значениям l и d п вычисляют отношение

где? - угол между нормалью к рассеивающей поверхности и направлением оси визирования, определяемый на плане при помощи геодезического транспорта.

(Измененная редакция, Изм. № 1).

4.5. Проведение дозиметрического контроля рассеянного лазерного излучения с неизвестными параметрами в спектральном диапазоне 0,4 ? 1,4 мкм

4.5.1. В заданной точке контроля устанавливают дозиметр группы II с приемным устройством соответствующего спектрального диапазона и включают в рабочий режим Р ср (Е е) или Q н (Н e).

(Измененная редакция, Изм. № 1).

4.5.2. В соответствии с методикой, изложенной в пп. 4.1.2 - 4.1.5, определяют угловые координаты оси визирования относительно нулевого ориентира и записывают их в протокол дозиметрического контроля (форма 3 приложения 3).

4.5.3. Оценку углового размера пятна засветки на рассеивающей поверхности проводят либо в пространстве объектов по схеме черт. 1, либо в пространстве изображений по схеме черт. 2 справочного приложения 4.

4.5.4. Угловой размер пятна засветки в пространстве объектов определяют при помощи непрозрачного экрана с отверстием переменного диаметра в следующей последовательности:

а) измерительной рулеткой или дальномерным устройством дозиметра измеряют расстояние l от точки контроля до рассеивающей поверхности;

б) экран с отверстием переменного диаметра располагают на расстоянии l 1 = 1 ? 3 м от приемного устройства дозиметра так, чтобы ось визирования проходила через центр отверстия экрана, перпендикулярно плоскости экрана;

в) устанавливают минимальный диаметр отверстия и снимают первое показание дозиметра в режиме измерения мощности или энергии (в зависимости от вида излучения). Затем увеличивают диаметр отверстия и при каждом значении d i снимают показания N i дозиметра.

В случае импульсного излучения при каждом значении d i снимают показания не менее чем для трех импульсов излучения и берут в качестве N i среднее значение.

Определяют диаметр отверстия d пр, при превышении которого показания дозиметра перестают увеличиваться;

г) вычисляют значение угла? пр по формуле

д) сравнивают полученное значение? пр с углом поля зрения приемного устройства, указанным в документации на применяемый дозиметр, утвержденной в установленном порядке.

Если? пр < ?, принимают? = ? пр.

Если? пр? ?, принимают? = ?.

4.5.5. Угловой размер пятна засветки в пространстве изображений определяют в следующей последовательности:

а) измеряют диаметр пятна засветки d из в плоскости приемника излучения, совмещенной с плоскостью изображения источника излучения, при помощи многоэлементного фотоприемника (матрицы), визуализатора (люминофора) или методом изменяющейся диафрагмы - в зависимости от конструкции применяемого дозиметра;

б) по шкале приемного устройства дозиметра определяют расстояние l из от задней главной плоскости оптической системы до плоскости изображения;

в) вычисляют значение угла? из по формуле

г) сравнивают полученное значение? из с углом поля зрения? приемного устройства, указанным в документации на применяемый дозиметр, утвержденной в установленном порядке.

Если? из < ?, принимают? = ? из.

Если? из? ?, принимают? = ?.

4.5.6. (Исключен, Изм. № 1).

5. ОБРАБОТКА И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ

5.1. По таблицам и формулам приложения к «Санитарным нормам и правилам устройства и эксплуатации лазеров» (М.: Минздрав СССР, 1982) устанавливают соответствующие условиям дозиметрического контроля значения ПДУ Н ПДУ и записывают их в протокол.

5.2. Полученные в результате измерений значения энергетической экспозиции в каждой точке контроля Н е сравнивают со значениями Н ПДУ и записывают в протоколе дозиметрического контроля заключение:

если Н е? Н ПДУ, зачеркивают слова «превышает в ____ раз»;

если Н е > Н ПДУ, вычисляют отношение , записывают его в протокол, а слова «не превышают» зачеркивают.

5.1, 5.2. (Измененная редакция, Изм. № 1).

5.3. На основании анализа протоколов дозиметрического контроля во всех заданных точках контроля, на плане помещения (или на плане открытой площадки) должна быть установлена зона безопасности при работе с лазером, предложены рекомендации по расстановке защитных экранов и применению специальных защитных очков.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. Общие требования безопасности измерений параметров лазерного излучения в диапазоне длин волн 0,25 ? 12,0 мкм должны соответствовать ГОСТ 12.3.002-75 и «Санитарными нормами и правилами устройства и эксплуатации лазеров» (М.: Минздрав СССР, 1982).

(Измененная редакция, Изм. № 1).

6.2. К проведению дозиметрического контроля допускаются лица, получившие удостоверение соответствующей квалификационной группы на право работы с электроустановками напряжением св. 1000 В по ГОСТ 12.2.007.3-75.

6.3. Перед включением в электросеть металлический корпус дозиметра должен быть заземлен в соответствии с ГОСТ 12.1.030-81.

(Измененная редакция, Изм. № 1).

6.4. Штатив с приемным устройством дозиметра должен быть снабжен непрозрачным экраном для защиты оператора во время проведения дозиметрического контроля.

6.5. При дозиметрическом контроле не допускается:

смотреть в сторону предполагаемого нахождения излучателя без специальных защитных очков по ГОСТ 12.4.013-85 со светофильтрами, рекомендованными «Санитарными нормами и правилами устройства и эксплуатации лазеров» (М.: Минздрав СССР, 1982);

находиться вблизи точки контроля посторонним лицам.

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 1

Справочное

ПОЯСНЕНИЯ К ТЕРМИНАМ, ИСПОЛЬЗУЕМЫМ В НАСТОЯЩЕМ СТАНДАРТЕ

Пояснение

1. Дозиметрия лазерного излучения

Комплекс методов определения значений параметров лазерного излучения в заданной точке пространства с целью выявления степени опасности для организма человека

2. Методы дозиметрического контроля лазерного излучения

Методы дозиметрии лазерного излучения, основанные на непосредственных измерениях параметров лазерного излучения

3. Энергетические параметры лазерного излучения

Мощность (средняя); облученность - непрерывное излучение. Энергия; энергетическая экспозиция - импульсное (импульсно-модулированное) излучение

4. Предельно допустимые уровни лазерного излучения (ПДУ)

Значения энергетических параметров лазерного излучения, воздействие которых не приводит к каким-либо органическим изменениям в организме человека

5. Зона безопасности

Часть пространства, в пределах которого значение энергетических параметров лазерного излучения не превышает ПДУ

6. Точка контроля

Точка пространства, в которой осуществляется дозиметрический контроль лазерного излучения

7. Источник лазерного излучения

Излучающий лазер или отражающая лазерное излучение поверхность

Источник излучения

8. Непрерывное лазерное излучение

Лазерное излучение, спектральная плотность мощности которого на частоте генерирования не обращается в нуль при заданном интервале времени, превышающем 0,25 с

9. Импульсное лазерное излучение

Лазерное излучение в виде отдельных импульсов длительностью не более 0,1 с с интервалами между импульсами более 1 с

10. Импульсно-модулированное лазерное излучение

Лазерное излучение в виде импульсов длительностью не более 0,1 с с интервалами между импульсами не более 1 с

11. Коллимированное излучение

Лазерное излучение в виде пучков, выходящих непосредственно из лазеров или отраженных от зеркальных поверхностей (без рассеивающих систем)

12. (Исключен, Изм. № 1)

13. Дозиметр лазерного излучения

Средство измерений параметров лазерного излучения в заданной точке пространства с целью выявления степени опасности для организма человека

Дозиметр

14. Основная погрешность дозиметра

Погрешность дозиметра при нормальных условиях:

температура окружающего воздуха - 20 ± 5 °С;

относительная влажность воздуха - 65 ± 15 %;

атмосферное давление - 100 ± 4 кПа

15. Ось визирования

Направление нормали к плоскости входного отверстия приемного устройства дозиметра

Ось визирования, соответствующая положению приемного устройства, при котором показания дозиметра максимальны

17. Нулевой ориентир

Выбранная на плане помещения точка пространства, принимаемая при проведении дозиметрического контроля лазерного излучения за начало координат

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 2

Справочное

СТРУКТУРНАЯ СХЕМА ДОЗИМЕТРОВ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

1. Дозиметры группы I

1.1. Структурная схема дозиметра группы I приведена на черт. 1.

1 - приемное устройство, 2 3 4 - отсчетное устройство, 5 6 7

(Измененная редакция, Изм. № 1).

1.2. Приемное устройство 1 2

1.3. Блок преобразования и регистрации 2 дозиметров группы I содержит два измерительных канала: канал измерения средней мощности Р ср (облученности Е е) непрерывного излучения 3 и канал измерения энергии Q и (энергетической экспозиции Н 5 . К выходу измерительных каналов подключено отсчетное устройство 4 .

(Измененная редакция, Изм. № 1).

2. Дозиметры группы II

2.1. Структурная схема дозиметра группы II приведена на черт. 2.

2.2. Приемное устройство 1 дозиметров содержит оптический блок и приемник излучения, с выхода которого на блок преобразования и регистрации 3 подается постоянное или импульсное электрическое напряжение.

2.3. Блок преобразования и регистрации 3 дозиметров группы II содержит пять измерительных каналов:

канал измерения средней мощности P ср (облученности Е е) непрерывного излучения 4 ,

канал измерения энергии Q и (энергетической экспозиции Н е) импульсного и импульсно-модулированного излучения 5 ,

канал измерения длительности импульсов излучения (? и), длительности воздействия непрерывного и импульсно-модулированного излучения (t ) 6 ;

канал измерения частоты повторения (F и) импульсов излучения 7 ;

канал измерения длины волны (?) излучения 8 .

К выходу измерительных каналов подключены соответствующие отсчетные устройства

1 - приемное устройство, 2 - отдельное приемное устройство канала измерения длины волны излучения (допускается), 3 - блок преобразования и регистрации, 4 - канал измерения средней мощности (облученности) непрерывного излучения, 5 - канал измерения энергии (энергетической экспозиции) импульсного и импульсно-модулированного излучения, 6 - канал измерения длительности импульсов излучения и длительности воздействия излучения, 7 - канал измерения частоты повторения импульсов излучения, 8 - канал измерения длины волны излучения, 9 - 12 - отсчетные устройства, 13 - переключатель режимов измерения, 14 - выход на внешний регистрирующий прибор

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 3

ФОРМА ПРОТОКОЛА ДОЗИМЕТРИЧЕСКОГО КОНТРОЛЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

1. При проведении дозиметрического контроля лазерного излучения в диапазонах длин волн 0,2 ? 0,4 и 1,4 ? 20 мкм и коллимированного излучения в диапазоне длин волн 0,4 ? 1,4 мкм следует использовать протокол формы 1.

(Измененная редакция, Изм. № 1).

2. При проведении дозиметрического контроля рассеянного лазерного излучения с известными параметрами в спектральном диапазоне 0,4 ? 1,4 мкм следует использовать протокол формы 2.

3. При проведении дозиметрического контроля рассеянного лазерного излучения с неизвестными параметрами в спектральном диапазоне 0,4 ? 1,4 мкм следует использовать протокол формы 3.

Форма 1

Протокол № _________________

дозиметрического контроля лазерного излучения

___________________________________________________________________________

___________________________________________________________________________

ИЗЛУЧЕНИЕ:

t

F и = _____ Гц

t = _____ с

Длина волны? = ________ мкм

Диаметр входной диафрагмы d д = ________ м

Площадь входной диафрагмы S д = ________ см 2

Номер измерения

Время измерения (ч, мин)

При измерении мощности Р 0 (облученности Е е):

___________________________________________________________________________

Место проведения контроля __________________________________________________

Дата проведения контроля «______» _________________ 19 _____ г.

Дозиметр типа _____________________________ № ______________________________

Нулевой ориентир __________________________________________________________

___________________________________________________________________________

Точка контроля № ______________________

Угловые координаты точки контроля на плане __________________________________

___________________________________________________________________________

Угловые координаты оси визирования _________________________________________

Температура окружающей среды ______________________ °С

ИЗЛУЧЕНИЕ:

непрерывное импульсное импульсно-модулированное

t = _____ с? и = _____ с? и = _____ с

F и = _____ Гц

t = _____ с

Длина волны? = ________ мкм

Диаметр источника излучения d л = ________ м

Угловая расходимость излучения? = ________ рад

Диаметр входной диафрагмы d д = ________ м

Площадь входной диафрагмы S

Протокол № _________________

дозиметрического контроля лазерного излучения

___________________________________________________________________________

Место проведения контроля __________________________________________________

Дата проведения контроля «______» _________________ 19 _____ г.

Дозиметр типа _____________________________ № ______________________________

Нулевой ориентир __________________________________________________________

___________________________________________________________________________

Точка контроля № ______________________

Угловые координаты точки контроля на плане __________________________________

Угловые координаты оси визирования _________________________________________

Температура окружающей среды ______________________ °С

ИЗЛУЧЕНИЕ:

непрерывное импульсное импульсно-модулированное

t = _____ с? и = _____ с? и = _____ с

F и = _____ Гц

t = _____ с

Длина волны? = ________ мкм

Диаметр входной диафрагмы d д = ________ м

Площадь входной диафрагмы S д = ________ см 2

Расстояние от точки контроля до рассеивающей поверхности l = __________ м

Угол на плане? = __________ рад

Угол? пр = __________ рад? из = __________ рад

Угол поля зрения приемного устройства дозиметра? = __________ рад

Рад

Измеряемый параметр (нужное подчеркнуть)

Номер измерения

Время измерения (ч, мин)

Показания дозиметра (Вт, Дж, Вт/см 2 , Дж/см 2)

При измерении мощности Р 0 (облученности Е е):

... с

Дж/см 2

... с

1 - непрозрачный экран с отверстием переменного диаметра d 1 ; 2 - приемное устройство дозиметра с входной диафрагмой диаметром d д; 3 - рассеивающая поверхность; ? - угол между нормалью к рассеивающей поверхности и осью падающего пучка; ? - угол между нормалью к рассеивающей поверхности и осью визирования; 2? - угол поля зрения приемного устройства дозиметра; l l 1 - расстояние от приемного устройства до экрана; - угловой размер отверстия экрана; d d изл - диаметр пятна засветки на рассеивающей поверхности

Схема расположения аппаратуры при оценке углового размера пятна засветки на рассеивающей поверхности в пространстве изображений

1 - рассеивающая поверхность; 2 - приемное устройство дозиметра; ? - угол между нормалью к рассеивающей поверхности и осью падающего пучка; ? - угол между нормалью к рассеивающей поверхности и осью визирования; 2? - угол поля зрения приемного устройства дозиметра; l - расстояние от приемного устройства до рассеивающей поверхности; l из - расстояние от задней главной плоскости оптической системы приемного устройства до плоскости изображения; d из - диаметр пятна засветки в плоскости приемника излучения, совмещенной с плоскостью изображения; 2? из - угловой размер пятна засветки в пространстве изображений; d л - диаметр пучка излучения; d изл - диаметр пятна засветки на рассеивающей поверхности.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

2. РАЗРАБОТЧИКИ

Б.М. Степанов (руководитель темы), В.Т. Кибовский, В.М. Красинская, В.И. Кухтевич, В.И. Сачков

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 23 апреля 1981 г. № 2083

4. ВВЕДЕН ВПЕРВЫЕ

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

6. ПЕРЕИЗДАНИЕ (август 1990 г.) с Изменением № 1, утвержденным в апреле 1988 г. (ИУС 7-88)

Лазерная установка включает активное (лазерное) среда с оптическим резонатором, источник энергии его возбуждения и, как правило, систему охлаждения

За счет монохроматичности лазерного луча и его малой расхождения (высокой степени. Калибровая) образуются исключительно высокие энергетические экспозиции, позволяющие получить локальный термоефек кт. Это является основой использования лазерных установок для обработки материалов (резка, сверление, поверхностная закалка и т.п.), в хирургии и других областях Лазерное излучение способно распространяться на зн ачни расстояния и отбиваться от границы раздела двух сред, что позволяет применять это свойство с целью локации, навигации, связи и иін.

Путем подбора тех или иных веществ активной среды лазера можно индуцировать излучение практически на всех длинах волн, начиная с ультрафиолетовых и заканчивая длинноволнового инфракрасного им.

Наибольшее распространение в настоящее время в народном хозяйстве получили лазеры, генерирующие электромагнитные излучения с длиной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм, т.е. диапазон длины ин волн электромагнитного излучения включает такие сферы

1) ультрафиолетовую - от 0,2 до 0,4 мкм;

2) оптическую - более 0,4 до 0,75 мкм;

3) ближнюю инфракрасную - более 0,75 до 1,4 мкм;

4) дальнюю инфракрасную - более 1,4 мкм

Основными физическими величинами, характеризующими лазерное излучение, являются:

Длина волны

Энергетическая освещенность (плотность мощности Wi),. Вт / см * - отношение потока излучения, падающего на участок поверхности, к площади этого участка;

Энергетическая экспозиция. Н,. Дж / см 2 - отношение энергии излучения, падающего на участок поверхности, к площади этого участка;

Длительность импульса

Длительность воздействия t, с - время воздействия лазерного излучения на человека в течение рабочей смены;

Частота повторения импульсов fi,. Гц - количество импульсов за 1 с. При работе с лазерными установками персонал, обслуживающего

может подвергаться воздействию излучения прямого (которое исходит непосредственно из лазера), рассеянного (рассеянного средой, через которое проходит излучение) и отраженного. Отраженное лазерное излучение м может быть зеркальным (в этом случае угол отражения луча от поверхности равен углу падения на нее), а также диффузным (излучение, отраженное в пределах полусферы от поверхности по разным направлениям). Н еобхидно подчеркнуть, что при эксплуатации лазеров в закрытых помещениях на персонал, как правило, действуют рассеянный и отраженное излучение; в условиях открытого пространства возникает реальная опасность воздействия прямых лучиів.

При действии прямых лучей на организм человека возможно развитие так называемых первичных и вторичных биологических эффектов. Первичные эффекты - это органические изменения, возникающие непосредственно в тканях, сопротивлением минюються; вторичные ~ неспецифические изменения, возникающие в организме в ответ на облучениея.

Органами-мишенями для лазерного излучения является кожа и глаза. Лазерное излучение оптической и ближней инфракрасной зон спектра при попадании в орган зрения достигает сетчатки, а излучение ультра афиолетовои и дальней инфракрасной зон спектра поглощается конъюнктивой, роговицы, хрусталикам.

Для создания безопасных условий труда и предупреждения профессиональных поражений персонала при обслуживании лазерных установок органы санитарного надзора осуществляют дозиметрический контроль

Дозиметрический контроль - измерение с помощью различных приборов уровней лазерного излучения и сравнение полученных величин с. ГДР (предельно допустимые уровни)

Для проведения дозиметрического контроля в настоящее время разработаны специальные средства измерения - лазерные дозиметры. Используемые приборы отличаются высокой чувствительностью и универсальностью, что дает возмож ивисть контролировать как направленное (прямое), так и рассеянный непрерывное, импульсное и импульсно-модулированное излучения большинства применяемых на практике лазерев.

широкое применение получил измеритель для лазерной дозиметрии. ИЛД-2М, который обеспечивает измерение параметров лазерного излучения в спектральных диапазонах 0,49-1,15 и 2-11 мкм. ИЛД-2М позволяет гу измерять энергию и энергетическую экспозицию от моноимпульсных и импульсно-модулированного излучений, а также мощность непрерывного излученияя.

компактнее и легче есть дозиметр лазерного излучения. ЛДМ-2. Дозиметр. ЛДМ-2 также измеряет энергетическую экспозицию от моноимпульсных и импульсно-модулированного, а также непрерывного излучения я. Но это единственный прибор для дозиметрического контроля длительного действия - от 1 до 104 с.

На основе дозиметра. ЛДМ-2 разработан дозиметр. ЛДМ-3, спектральный диапазон которого распространяется на. УФ-зону спектра (0,2-0,5 мкм)

Лазерный дозиметр оперативного контроля. ЛДК предназначен для экспресс-контроля уровней лазерного излучения на рабочих местах операторов

Дозиметрический контроль лазерного излучения в зависимости от его спектра, вида воздействия на персонал (прямое, рассеянное), наличии сведений о параметрах излучения (известные, неизвестные) имеет определенные особые ности, изложенные в разделе"Проведение контроля"ГОСТ 121031-81"Методы дозиметрический контроля лазерного излученияя".

Однако существуют общие требования, соблюдение которых при дозиметрии лазерного излучения обязательное частности, после установки дозиметра в заданной точке контроля и направления отверстия входного диафрагмы его приемного устройства на возможный источник излучения регистрируется максимальное показания прибору.

В порядке текущего санитарного надзора определения уровня облучения персонала при обслуживании лазеров (установок) классов II-IV проводится не реже одного раза в год

Кроме того, дозиметрический контроль выполняется при внесении любых изменений в конструкцию действующих лазеров (установок), изменении конструкции средств защиты, организации новых рабочих мест и установлении но овых лазеров (установок) классов II-I.

Перед введением в эксплуатацию лазеры классов безопасности II-IV принимаются комиссией, назначаемой администрацией учреждения с включением в ее состав представителя. Госсаннадзора

Результаты дозиметрического контроля лазерного излучения вносятся в протокол, который должен содержать следующие сведения: место и дату проведения контроля, тип и заводской номер дозиметра; нулевой режимвимірювання; значення параметрів випромінювання λ, і, t, Fi (у лазерів із відомими параметрами); діаметр і площу обраної вхідної діафрагми приймального пристрою дозиметра; температуру нав жающей среды.

При проведении дозиметрического контроля лазерами (установками) необходимо соблюдать требования безопасности. Штатив с приемным устройством дозиметра должен иметь непрозрачный экран для защиты оператора при д время дозиметрии. Кроме того, запрещается смотреть в сторону возможного излучения без специальных защитных очков. К проведению дозиметрического контроля допускаются лица, получившие специальное пос видчення соответствующей квалификационной группы на право работы с электроустановками напряжением выше 10000. В.

При работе лазеров (установок) возможно генерирование комплекса физических и химических факторов, которые могут не только усиливать неблагоприятное воздействие излучения, но и иметь самостоятельное значение (табл. 310)

Таблица 310. Сопутствующие опасные и вредные производственные факторы при эксплуатации лазеров (установок) *

Примечание: сведения, предоставленные в таблице, ориентировочные

В связи с этим врач по гигиене труда обязан не только проводить дозиметрии лазерного излучения, но и давать оценку сопутствующим факторам (методика их оценки изложена в соответствующих разделах). Пр ры гигиенической оценке лазерного излучения получены при дозиметрии значения величин необходимо сравнить с. ГДР. По. ГДР лазерного излучения берутся энергетические экспозиции (в джоулях на ссм 2) тканей, облучались

Обоснованные ныне. ГДР лазерного излучения относятся к спектральному диапазону от 0,2 до 20 мкм и регламентируются на роговице, сетчатке и коже

Предельно допустимый уровень воздействия лазерного излучения зависит от длины волны X, продолжительности х и частоты повтора импульсов f, продолжительности действия и. В диапазоне 0,4-1,4 мкм этот уровень дополнительно зависимость жить от углового размера источника излучения а, советов, или от диаметра пятна освещена на сетчатке d см, в диапазоне 0,4-0,75 мкм - от фоновой освещенности роговицы. Фр, ллк.

ГДР лазерного излучения предоставляется в"санитарных нормах и правилах устройств и эксплуатации лазеров"№ 2392-81

. Воздействие лазерного излучения на органы зрения

Основной элемент зрительного аппарата человека - сетчатка глаза - может быть поражена лишь излучением видимого (от 0,4 мкм) и ближнего. УЧдиапазонив (до 1,4 мкм), что объясняется спектральными характеристиками икамы человеческого глаза. При этом хрусталик и глазное яблоко, которые действуют как дополнительная фокусирующая оптика, существенно повышают концентрацию энергии на сетчатке. Это, в свою очередь, на несколько порядков снижает макси минимально допустимый уровень (МДУ) облучения зрачковці.

Требования к производителям лазерных приборов в связи с обеспечением безопасности пользователей. Поскольку степень поражения зависит от интенсивности излучения, длительности воздействия, длины волны, особенности тей тканей и органов, облучаемых, то рекомендуется распределить лазерные приборы на четыре класса с точки зрения опасности лазерного облучения для пользователейв.

Лазерные излучатели класса I. Наиболее безопасными как по своей природе (МГС облучения не может быть превышен), так и по конструктивному исполнению являются лазерные приборы класса I. В связи с таким подв войнах подходом допустимые пределы излучения (ДМВ) лазерных приборов класса I в спектральной зоне от 0,4 до 1,4 мкм, для которой возможно как точечное, так и протяженное повреждение сетчатки, характеризуют ься значениями в двух аспектах - энергетическом (в ваттах или джоулях) и яркостнойму.

Лазерные излучатели класса II. Это маломощные лазерные приборы, излучающие только в видимом (0,4 что человек имеет естественную реакцию защиты своих глаз от воздействия непрерывного излучения (рефлекс мигания). В случае кратковременных облучений (класса 11 не должна превышать соответствующие. ДМВ для приборов класса I. Таким образом, лазерные излучатели класса II не могут нанести вред человеку вопреки ее желаниюч її бажанню.

Лазерные излучатели класса III. Излучатели этого класса занимают переходное положение между безопасными приборами класса I, II и лазерами класса IV (которые, безусловно, нуждаются принятии мер по защите у персонала).

Лазерные излучатели подкласса. Ша. К ним относятся условно безопасные излучатели. Они не способны повредить зрение человека, но при условии использования каких-либо дополнительных оптических приборов для наблюде ния прямого лазерного излучения. Согласно этого условия мощность видимого излучения непрерывных лазеров подкласса. Ша не должна превышать 5 мВт (т.е. пятикратного значения. ДМВ для класса II), а облучения - 25. Вт /т/м 2 .

Лазерные излучатели подкласса. ИИИБ. К ним относятся излучатели средней мощности, непосредственное наблюдение которых даже невооруженным (без оптической фокусирующей системы) глазом опасное для зрения. Однако при соблюдении определенных условий - удалении глаза больше чем на 13 см от рассеиваемая и времени воздействия не более 10 с - допустимое наблюдения диффузно рассеянного излучения. Таким образом, непрерывная мощность таких лазеров не может превышать 0,5. Вт, а энергетическая экспозиция - 100 кДж / кДж/м 2 .

Лазерные излучатели класса IV. Это мощные лазерные установки, способные повредить зрение и кожные покровы человека не только прямым, но и диффузным рассеянным излучением. Значение. ДМВ в этом случае превышаю ют значения, принятые для подкласса. ИИИБ. Работа с лазерными излучателями класса IV требует обязательного соблюдения соответствующих защитных западедів.

. Основные правила техники безопасности при эксплуатации лазерных установок

При работе с лазерами необходимо обеспечить такие условия труда, при которых не превышаются предельно допустимые уровни облучения глаз и кожи. Меры безопасности заключаются в устройстве защитных экранов, канале изации лазерного излучения по световодах, использовании защитных очков. Защитные очки следует тщательно подбирать в зависимости от рабочей длины волны лазерного света, а их спектр пропускания необх идно проверять. Очки должны эффективно сдерживать излучения лазера, однако не быть слишком темными. Для защиты от рассеянного излучения, кроме использования очков, применяют специальное фар ние или отделку стен лаборатории, а также ограждения экранамнами.

При использовании лазеров видимого диапазона нужны специальные предупреждающие световые табло или надписи при работе с лазерами. Для непрерывных лазеров мощностью 1-5 мВт желательно выполнение ряда с мероприятий, среди которых: защита глаз работа в специальном помещении; ограничение пути луча; предупредительные световые табло. При применении лазеров средней мощности эти мероприятия являются обязательными, а д ля мощных лазеров, кроме названных мер, необходимо контролировать помещение и систему оповещения, обеспечивать дистанционное включение, управление работой и выключателя питанияня.

Рекомендуется обучение правилам техники безопасности и периодическое обследование персонала, обслуживающего лазерные установки

Контрольные вопросы и задания

1. Какие наиболее распространенные диапазоны длин волн?

2. Назовите общие требования, которым должны следовать пользователи лазеров

3. Назовите требования безопасности при работе с лазерами

4. Назовите допустимые уровни лазерного излучения, б. Как лазерное излучение воздействует на органы зрения?

6. Какие требования предъявляют производителей лазерных приборов в направлении обеспечения безопасности?

7. Приведите основные правила техники безопасности при эксплуатации лазерных приборов

Лазерное излучение (ЛИ) - вынужденное испускание атомами вещества квантов электромагнитного излучения. Слово «лазер» - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulated emission of radiation (усиление света с помощью создания стимулированного излучения). Основными элементами любого лазера являются активная среда, источник энергии для ее возбуждения, зеркальный оптический резонатор и система охлаждения. ЛИ за счет монохроматичности и малой расходимости пучка способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять эти свойства для целей локации, навигации и связи.

Возможность создания лазерами исключительно высоких энергетических экспозиций позволяет использовать их для обработки различных материалов (резание, сверление, поверхностная закалка и др.).

При использовании в качестве активной среды различных веществ лазеры могут индуцировать излучение практически на всех длинах волн, начиная с ультрафиолетовых и заканчивая длинноволновыми инфракрасными.

Основными физическими величинами, характеризующими ЛИ, являются: длина волны (мкм), энергетическая освещенность (Вт/см 2), экспозиция (Дж/см 2), длительность импульса (с), длительность воздействия (с), частота повторения импульсов (Гц).

Биологическое действие лазерного излучения. Действие ЛИ на человека весьма сложно. Оно зависит от параметров ЛИ, прежде всего от длины волны, мощности (энергии) излучения, длительности воздействия, частоты следования импульсов, размеров облучаемой области («размерный эффект») и анатомо-физиологических особенностей облучаемой ткани (глаз, кожа). Поскольку органические молекулы, из которых состоит биологическая ткань, имеют широкий спектр абсорбируемых частот, то нет оснований считать, что монохроматичность ЛИ может создавать какие-либо специфические эффекты при взаимодействии с тканью. Пространственная когерентность также существенно не меняет механизма повреждений

излучением, так как явление теплопроводности в тканях и присущие глазу постоянные мелкие движения разрушают интерференционную картину уже при длительности воздействия, превышающей несколько микросекунд. Таким образом, ЛИ пропускается и поглощается биотканями по тем же законам, что и некогерентное, и не вызывает в тканях каких-либо специфических эффектов.

Энергия ЛИ, поглощенная тканями, преобразуется в другие виды энергии: тепловую, механическую, энергию фотохимических процессов, что может вызывать ряд эффектов: тепловой, ударный, светового давления и пр.

ЛИ представляют опасность для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38-0,7 мкм) и ближнего инфракрасного (0,75-1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18-0,38 мкм) и дальнее инфракрасное (более 1,4 мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужку, хрусталик. Достигая сетчатки, ЛИ фокусируется преломляющей системой глаза, при этом плотность мощности на сетчатке увеличивается в 1000-10000 раз по сравнению с плотностью мощности на роговице. Короткие импульсы (0,1 с-10 -14 с), которые генерируют лазеры, способны вызвать повреждение органа зрения за значительно более короткий промежуток времени, чем тот, который необходим для срабатывания защитных физиологических механизмов (мигательный рефлекс 0,1 с).

Вторым критическим органом к действию ЛИ являются кожные покровы. Взаимодействие лазерного излучения с кожными покровами зависит от длины волны и пигментации кожи. Отражающая способность кожных покровов в видимой области спектра высокая. ЛИ дальней инфракрасной области начинает сильно поглощаться кожными покровами, поскольку это излучение активно поглощается водой, которая составляет 80% содержимого большинства тканей; возникает опасность возникновения ожогов кожи.

Хроническое воздействие низкоэнергетического (на уровне или менее ПДУ ЛИ) рассеянного излучения может приводить к развитию неспецифических сдвигов в состоянии здоровья лиц, обслуживающих лазеры. При этом оно является своеобразным фактором риска развития невротических состояний и сердечно-сосудистых расстройств. Наиболее характерными клиническими синдромами, обнаруживаемыми у работающих с лазерами, являются астенический, астеновегетативный и вегетососудистая дистония.

Нормирование ЛИ. В процессе нормирования устанавливаются параметры поля ЛИ, отражающие специфику его взаимодействия с биологическими тканями, критерии вредного действия и числовые значения ПДУ нормируемых параметров.

Научно обоснованы два подхода к нормированию ЛИ: первый - по повреждающим эффектам тканей или органов, возникающим непосредственно в месте облучения; второй - на основе выявляемых функциональных и морфологических изменений ряда систем и органов, не подвергающихся непосредственному воздействию.

Гигиеническое нормирование основывается на критериях биологического действия, обусловленного, в первую очередь, областью электромагнитного спектра. В соответствии с этим диапазон ЛИ разделен на ряд областей:

От 0,18 до 0,38 мкм - ультрафиолетовая область;

От 0,38 до 0,75 мкм - видимая область;

От 0,75 до 1,4 мкм - ближняя инфракрасная область;

Свыше 1,4 мкм - дальняя инфракрасная область.

В основу установления величины ПДУ положен принцип определения минимальных «пороговых» повреждений в облучаемых тканях (сетчатка, роговица, глаза, кожа), определяемых современными методами исследования во время или после воздействия ЛИ. Нормируемыми параметрами являются энергетическая экспозиция Н (Дж-м -2) и облученность Е (Вт-м -2), а также энергия W (Дж) и мощность Р (Вт).

Данные экспериментальных и клинико-физиологических исследований свидетельствуют о превалирующем значении общих неспецифических реакций организма в ответ на хроническое воздействие низкоэнергетических уровней ЛИ по сравнению с местными локальными изменениями со стороны органа зрения и кожи. При этом ЛИ видимой области спектра вызывает сдвиги в функционировании эндокринной и иммунной систем, центральной и периферической нервной систем, белкового, углеводного и липидного обменов. ЛИ с длиной волны 0,514 мкм приводит к изменениям в деятельности сим- патоадреналовых и гипофизнадпочечниковых систем. Длительное хроническое действие ЛИ длиной волны 1,06 мкм вызывает вегетососудистые нарушения. Практически все исследователи, изучавшие состояние здоровья лиц, обслуживающих лазеры, подчеркивают более высокую частоту обнаружения у них астенических и вегетативно-сосудистых расстройств. Следовательно, низкоэнергетическое

ЛИ при хроническом действии выступает как фактор риска развития патологии, что и определяет необходимость учета этого фактора в гигиенических нормативах.

Первые ПДУ ЛИ в России для отдельных длин волн были установлены в 1972 г., а в 1991 г. введены в действие «Санитарные нормы и правила устройства и эксплуатации лазеров» СН и П? 5804. В США существует стандарт ANSI-z.136. Разработан также стандарт Международной электротехнической комиссией (МЭК) - Публикация 825. Отличительной особенностью отечественного документа по сравнению с зарубежными является регламентация значений ПДУ с учетом не только повреждающих эффектов глаз и кожи, но и функциональных изменений в организме.

Широкий диапазон длин волн, разнообразие параметров ЛИ и вызываемых биологических эффектов затрудняет задачу обосно- вания гигиенических нормативов. К тому же экспериментальная и особенно клиническая проверки требуют длительного времени и средств. Поэтому для разрешения задач по уточнению и разработке ПДУ ЛИ используют математическое моделирование. Это позволяет существенно уменьшить объем экспериментальных исследований на лабораторных животных. При создании математических моделей учитываются характер распределения энергии и абсорбционные характеристики облучаемой ткани.

Метод математического моделирования основных физических процессов (термический и гидродинамические эффекты, лазерный пробой и др.), приводящих к деструкции тканей глазного дна при воздействии ЛИ видимого и ближнего ИК диапазонов с длительностью импульсов от 1 до 10 -12 с, был использован при определении и уточнении ПДУ ЛИ, вошедших в последнюю редакцию «Санитарных норм и правил устройства и эксплуатации лазеров» СНиП? 5804- 91, которые разработаны на основании результатов научных исследований.

Действующие правила устанавливают:

Предельно допустимые уровни (ПДУ) лазерного излучения в диапазоне длин волн 180-10 6 нм при различных условиях воздействия на человека;

Классификацию лазеров по степени опасности генерируемого ими излучения;

Требования к производственным помещениям, размещению оборудования и организации рабочих мест;

Требования к персоналу;

Контроль за состоянием производственной среды;

Требования к применению средств защиты;

Требования к медицинскому контролю.

Степень опасности ЛИ для персонала положена в основу классификации лазеров, согласно которой они подразделяются на 4 класса:

1-й - класс (безопасные) - выходное излучение не опасно для глаз;

2-й - класс (малоопасные) - представляют опасность для глаз как прямое, так и зеркально отраженное излучения;

3-й - класс (среднеопасное) - представляет опасность для глаз также и диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности;

4-й - класс (высокоопасное) - представляет уже опасность и для кожи на расстоянии 10 см от диффузно отражающей поверхности.

Требования к методам, средствам измерений и контролю ЛИ. Дозиметрией ЛИ называют комплекс методов определения значений параметров лазерного излучения в заданной точке пространства с целью выявления степени опасности и вредности его для организма человека

Лазерная дозиметрия включает два основных раздела:

- расчетная, или теоретическая дозметрия, которая рассматривает методы расчета параметров ЛИ в зоне возможного нахождения операторов и приемы вычисления степени его опасности;

- экспериментальная дозиметрия, рассматривающая методы и средства непосредственного измерения параметров ЛИ в заданной точке пространства.

Средства измерений, предназначенные для дозиметрического контроля, называются лазерными дозиметрами. Дозиметрический контроль приобретает особое значение для оценки отраженных и рассеянных излучений, когда расчетные методы лазерной дозиметрии, основанные на данных выходных характеристик лазерных установок, дают весьма приближенные значения уровней ЛИ в заданной точке контроля. Использование расчетных методов диктуется отсутствием возможности провести измерение параметров ЛИ для всего разнообразия лазерной техники. Расчетный метод лазерной дозиметрии позволяет оценивать степень опасности излучения в заданной точке пространства, используя в расчетах паспортные данные. Расчетные методы удобны для случаев работы с редко повторяющимися кратковременными импульсами излучения, когда ограни-

чена возможность измерения максимального значения экспозиции. Они используются для определения лазерно-опасных зон, а также для классификации лазеров по степени опасности генерируемого ими излучения.

Методы дозиметрического контроля установлены в «Методических указаниях для органов и учреждений санитарно-эпидеми- ологических служб по проведению дозиметрического контроля и гигиенической оценке лазерного излучения» ? 5309-90, а также частично рассмотрены в «Санитарных нормах и правилах устройства и эксплуатации лазеров» СН и П? 5804-91.

В основе методов лазерной дозиметрии лежит принцип наибольшего риска, в соответствии с которым оценка степени опасности должна осуществляться для наихудших с точки зрения биологического воздействия условий облучения, т.е. измерение уровней лазерного облучения следует проводить при работе лазера в режиме максимальной отдачи мощности (энергии), определенной условиями эксплуатации. В процессе поиска и наведения измерительного прибора на объект излучения должно быть найдено такое положение, при котором регистрируются максимальные уровни ЛИ. При работе лазера в импульсно-периодическом режиме измеряют энергетические характеристики максимального импульса серии.

При гигиенической оценке лазерных установок требуется измерять не параметры излучения на выходе лазеров, а интенсивность облучения критических органов человека (глаза, кожа), влияющую на степень биологического действия. Эти измерения проводят в конкретных точках (зонах), в которых программой работы лазерной установки определено наличие обслуживающего персонала и в которых уровни отраженного или рассеянного ЛИ невозможно снизить до нуля.

Пределы измерений дозиметров определяются значениями ПДУ и техническими возможностями современной фотометрической аппаратуры. Все дозиметры должны быть аттестованы органами Госстандарта в установленном порядке. В России разработаны специальные средства измерений для дозиметрического контроля ЛИ - лазерные дозиметры. Они отличаются высокой универсальностью, заключающейся в возможности контроля как направленного, так и рассеянного непрерывного, моноимпульсного и импульсно- периодического излучений большинства применяемых на практике лазерных установок в промышленности, науке, медицине и пр.

Профилактика вредного действия лазерного излучения (ЛИ). Защиту от ЛИ осуществляют техническими, организационными и лечебнопрофилактическими методами и средствами. К методическим средствам относятся:

Выбор, планировка и внутренняя отделка помещений;

Рациональное размещение лазерных технологических установок;

Соблюдение порядка обслуживания установок;

Использование минимального уровня излучения для достижения поставленной цели;

Применение средств защиты. Организационные методы включают:

Ограничение времени воздействия излучения;

Назначение и инструктаж лиц, ответственных за организацию и проведение работ;

Ограничение допуска к проведению работ;

Организация надзора за режимом работ;

Четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;

Проведение инструктажа, наличие наглядных плакатов;

Обучение персонала.

Санитарно-гигиенические и лечебно-профилактические методы включают:

Контроль за уровнями опасных и вредных факторов на рабочих местах;

Контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

Производственные помещения, в которых эксплуатируются лазеры, должны отвечать требованиям действующих санитарных норм и правил. Лазерные установки размещают таким образом, чтобы уровни излучения на рабочих местах были минимальными.

Средства защиты от ЛИ должны обеспечивать предотвращение воздействия или снижение величины излучения до уровня, не превышающего допустимый. По характеру применения средства защиты подразделяются на средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Надежные и эффективные средства защиты способствуют повышению безопасности труда, снижают производственный травматизм и профессиональную заболеваемость.

Таблица 9.1. Защитные очки от лазерного излучения (выписка из ТУ 64-1-3470-84)

К СКЗ от ЛИ относятся: ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др.

СИЗ от лазерного излучения включают защитные очки (табл. 9.1), щитки, маски и др. Средства защиты применяются с учетом длины волны ЛИ, класса, типа, режима работы лазерной установки, характера выполняемой работы.

СКЗ должны предусматриваться на стадиях проектирования и монтажа лазеров (лазерных установок), при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производиться в зависимости от класса лазера (лазерной установки), интенсивности излучения в рабочей зоне, характера выполняемой работы. Показатели защитных свойств защиты не должны снижаться под воздействием других опасных

и вредных факторов (вибрации, температуры и т.д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.).

Средства индивидуальной защиты глаз и лица (защитные очки и щитки), снижающие интенсивность ЛИ до ПДУ, должны применять- ся только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.

При работе с лазерами должны применяться только такие средства защиты, на которые имеется нормативно-техническая документация, утвержденная в установленном порядке.

Методические указания
для органов и учреждений санитарно-эпидемиологических служб
по проведению дозиметрического контроля и гигиенической
оценки лазерного излучения

(утв. Главным Государственным санитарным врачом СССР
28 декабря 1990 г. № 530990)

1. Общие положения

1.1. Настоящие указания являются руководством по проведению дозиметрического контроля лазерного излучения в диапазоне длин волн 0,18 - 20,0 мкм и его гигиенической оценки в соответствии с действующими санитарными нормами и правилами устройства и эксплуатации лазеров, утвержденными Минздравом СССР.

1.2. Указания распространяются на измерение уровней моноимпульсного, импульсно-периодического и непрерывного лазерного излучения с известными параметрами, такими, как длина волны, длительность импульса, частота повторения импульсов.

1.3. Указания устанавливают методы и условия проведения дозиметрического контроля и гигиенической оценки параметров лазерного излучения на рабочих местах обслуживающего персонала с целью определения степени опасности излучения для организма человека.

1.4. Настоящие указания предназначены для органов и учреждений санитарно-эпидемиологических служб.

2. Определения, обозначения, величины и единицы измерений

2.1. Дозиметрия лазерного излучения - комплекс методов и средств определения значений параметров лазерного излучения в заданной точке пространства с целью выявления степени опасности и вредности для организма человека.

2.2. Расчетная или теоретическая дозиметрия - методы расчета параметров лазерного излучения в зоне возможного нахождения человека.

2.3. Экспериментальная дозиметрия - методы непосредственного измерения параметров лазерного излучения в заданной точке пространства.

2.4. Дозиметрический контроль - сопоставление результатов измерений или расчетов уровней лазерного излучения со значениями предельно допустимых уровней.

2.5. Предельно допустимые уровни (ПДУ) облучения - уровни лазерного облучения человека (глаз и кожи), которые не вызывают сразу или через длительный период времени повреждений, заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования.

2.6. Лазерное изделие - устройство, включающее в себя лазер и другие технические компоненты, обеспечивающие его целевое назначение.

2.7. Рабочая зона - пространство (часть рабочего помещения) в котором присутствие обслуживающего персонала предусмотрено характером работы лазерного изделия или видом работы (пуско-наладочные работы, ремонт).

2.8. Точка контроля - точка пространства, в которой осуществляется дозиметрический контроль лазерного излучения.

2.9. Дозиметр лазерного излучения - средство измерения параметров лазерного излучения в заданной точке пространства.

2.10. Источник лазерного излучения - излучение лазерного изделия или отражающая лазерное излучение поверхность (вторичный источник излучения).

2.11. Непрерывное излучение - лазерное излучение с периодом длительности 0,25 с и более.

2.12. Импульсное излучение - лазерное излучение в виде одного (моноимпульс) или последовательности импульсов длительностью не более 0,1 с с интервалами между импульсами более 1 с.

2.13. Импульсно-периодическое излучение - лазерное излучение в виде импульсов длительностью не более 0,1 с с интервалами между импульсами не более 1 с.

2.14. Облученность (Вт×см -2) - отношение потока излучения, падающего на участок поверхности, к площади этого участка.

2.15. Энергетическая экспозиция - отношение энергии излучения, падающей на участок поверхности, к площади этого участка (Дж×см -2) или произведение облученности (Вт×см -2) на длительность облучения (с).

2.16. Целевое наблюдение - все условия наблюдения, когда глаз подвергается воздействию коллимированных пучков и точечных источников излучения.

2.17. Ближняя, средняя, дальняя зона - положение источника лазерного излучения, при перемещении его относительно точки контроля, равное 1/3 расстояния.

2.18. Время воздействия - время воздействия лазерного излучения на человека за рабочий день.

2.19. Лазерно-опасная зона - часть пространства, в пределах которого уровни прямого, отраженного или рассеянного лазерного излучения превышают предельно допустимые.

2.20. Выходные характеристики лазерного излучения - параметры лазерного излучения, определяемые из паспортных данных на лазерное изделие:

Энергия - Q и, Дж;

Мощность - Р , Вт;

Длина волны - λ , мкм;

Частота повторения импульсов - F , Гц;

Диаметр пучка - d , см;

Длительность импульса - τ и, с;

Расходимость лазерного излучения - θ 0 , рад;

2.21. Измеряемые параметры излучения :

Облученность - Е е, Вт×см -2 ;

Энергетическая экспозиция - Н е, Дж×см -2 ;

Время воздействия непрерывного или импульсно-периодического излучения - t в, с;

Угловой размер источника излучения α , рад.

3. Аппаратура

3.1. Измерение параметров лазерного излучения проводится с использованием специальных средств измерений для дозиметрического контроля лазерного излучения -лазерных дозиметров, технические характеристики которых приведены в табл. .

3.2. Аппаратура, применяемая для измерений параметров лазерного излучения, должна быть аттестована органами Госстандарта СССР и проходить государственную поверку в установленном порядке.

3.3. Эксплуатация аппаратуры осуществляется в соответствии с заводской инструкцией.

4. Точки контроля и подготовка к измерениям

4.1. Дозиметрический контроль за лазерным излучением осуществляется персоналом, прошедшим специальную подготовку по работе с лазерными дозиметрами, освоившими методы проведения измерений и обработки результатов и изучившим правила техники безопасности работы с источниками лазерного излучения.

Технические характеристики средств измерений, применяемых при дозиметрическом контроле лазерного излучения

Тип

Рабочая длина волны, спектральный диапазон, мкм

Характеристика в режиме измерений энергетической экспозиции (энергии)

Длительность импульсов, с

Максимальная частота Гц

Диапазон измерений Дж/см 2 (Дж)

Предел основной допустимой погрешности, %

ИЛД-2М

0,63; 0,69; 1,06

10 -8 - 10 -2

1,4×10 -9 - 1

±18 (±30)

0,49 - 1,15

10 -8 - 10 -2

1,4×10 -9 - 10 -5

±30

10,6

10 -6 - 10 -2

10 -5 - 10 -1

±16 (±22)

ЛДМ-2

0,63; 0,69; 1,06

10 -8 - 10 -2

10 -9 - 10 -1

±18 (±20)

0,63; 0,69; 1,06

непрерывн.

10 -7 - 10 4

±20 (±26)

0,49 - 1,15

10 -8 - 10 -2

10 -9 - 10 -5

±30

0,49 - 1,15

непрерывн.

10 -7 - 1

±35

10,6

10 -6 - 10 -2

10 -5 - 10 -1

±22 (±26)

10,6

непрерывн.

10 -3 - 10 4

±22 (±26)

ЛДМ-3

0,26; 0,34;

10 -8 - 10 -2

10 -9 - 10

±25

0,26; 0,34

непрерывн.

10 -7 - 10 2

±30

ЛДК

0,69; 1,06

10 -8 - 10 -2

10 3

10 -8 - 10 -4

±20

0,49 - 1,06

10 -8 - 10 -2

10 3

10 -8 - 10 -4

±30

ИЛД-2М, ЛДМ-2 выпускаются Волгоградским заводом "Эталон".

Продолжение таблицы 1

Тип

Характеристики в режиме измерения облученности (мощности)

Площадь входного зрачка, см 2

Угол поля зрения,

град

Габаритные размеры, мм

Масса, кг

Источник питания

Вид индикатора

диапазон измерений, Вт/см 2 (Вт)

предел основной допускаемой погрешности, %

ИЛД-2М

1,4×10 -7 - 10

±15 (±20)

7,1; 1; 0,5; 0,1

15; 5

444×320×140(БПР)

10 (БПР)

Сеть переменного тока (220 В, 50 Гц)

Стрелочный

±25

323×146×210 (ФПУ)

2,3 (ФПУ)

±20 (±22)

ЛДМ-2

1,4×10 -7 - 10 -3

±25

7,1; 1; 0,5; 0,1

15; 5

274×125×86 (БПР)

2,5 (БПР)

Сеть переменного тока

Цифровой

10 -3 - 10

±20 (±22)

114×42×70 (ФПУ1)

0,2 (ФПУ1)

(220 В, 50 Гц)

104×37×52 (ФПУ2)

0,18 (ФПУ2)

встроенный аккумулятор

10 -7 - 10

±16 (±20)

10 -7 - 10 -3

±30

10 -3 - 1

±20 (±24)

ЛДМ-3

15; 5

Аналогичны ЛДМ-2

Цифровой

10 -7 - 10 -5

±20

15; 5

ЛДК

Сменные батареи

4.2. Точки контроля следует выбирать на постоянных рабочих местах в рабочей зоне.

4.3. Если использование лазерного изделия строго соответствует 1 - 2 классу, определенному изготовителем, то нет необходимости в проведении контроля уровней лазерного излучения. Контроль ограничивается проверкой выполнения требований к потребителям лазерных изделий, действующих санитарных норм и правил устройства и эксплуатации лазеров.

4.4. При контроле лазерных изделий 3 - 4 класса опасности необходимо подтвердить соответствие использование лазерного изделия классификации, наличие четких инструкций по технике безопасности на проведение всех видов работ (эксплуатация, обслуживание, ремонт), а также наличие средств индивидуальной защиты.

4.5. При изменении технических параметров, влияющих на характер работы лазерного изделия, необходимо провести классификацию. Изменения класса влечет за собой изменение знаков и надписей на лазерных изделиях.

4.6. Контроль уровней лазерного излучения на рабочих местах проводится в следующих случаях:

При приемке в эксплуатацию новых лазерных изделий 3 - 4 класса;

При внесении изменений в конструкцию действующих лазерных изделий;

При изменении конструкции средств коллективной защиты;

При организации новых рабочих мест.

4.7. Для проведения дозиметрического контроля параметров лазерного излучения составляется план помещения в котором отмечают направление и трассу распространения лазерного пучка, положение отражающих поверхностей и нормалей к их поверхностям, местоположение защитных приспособлений (экранов, кожухов, смотровых окон), точки контроля.

4.8. На постоянных рабочих местах при определении уровней облучения глаз и кожи точки контроля должны находиться на расстоянии минимально-возможного приближения глаз или незащищенных частей тела человека к источнику излучения.

4.9. При отсутствии постоянного рабочего места необходимо определить рабочую зону, в границах которой имеется вероятность воздействия на персонал лазерного излучения.

4.10. Для регистрации данных подготавливают протокол дозиметрического контроля (рекомендуемая форма приведена в Приложении ), в который записывают следующие данные:

Дата проведения контроля;

Место проведения контроля;

Наименование лазерного изделия;

Классификация лазерного изделия;

Режим генерации излучения (моноимпульсный, импульсно-периодический, непрерывный);

Характеристики лазерного изделия, определяемые из паспортных данных - энергия (мощность), частота импульсов, длительность импульсов, диаметр пучка, расходимость;

Используемые средства защиты;

План размещения лазерного изделия с указанием оптических осей лазерного пучка, отражающих поверхностей, наличие защитных экранов, и точек контроля.

Тип дозиметра и его заводской номер.

5. Проведение измерений

5.1. Измерения уровней лазерного излучения следует проводить:

При работе лазерного изделия в режиме максимальной отдачи мощности (энергии), определенной условиями эксплуатации;

От всех источников излучения, встречающихся на пути лазерного пучка;

При условиях, когда создается максимальный уровень доступного излучения;

В точках пространства, в которых возможно воздействие лазерного излучения на персонал при всех видах работы (эксплуатация, пуско-наладочные работы и пр.).

5.2. В процессе поиска и наведения измерительного прибора на источник излучения должно быть найдено такое положение, при котором регистрируются максимальные уровни лазерного излучения.

5.3. При частоте следования импульсов свыше 1 кГц лазерное излучение следует рассматривать как непрерывное и характеризовать средней мощностью.

5.4. Допускается при известном времени воздействия t в проводить измерение облученности Е е с последующим пересчетом в значения энергетической экспозиции Н е по формуле:

где: d - диаметр источника излучения, см;

Θ - угол между нормалью к поверхности источника и направлением наблюдения, град;

R - расстояние от источника излучения до точки контроля, см.

5.7. Для дозиметра ИЛД-2М площадь отверстия входного зрачка должна быть равна 1 см 2 при работе в диапазоне длин волн 0,49 - 1,15 мкм и 0,1 см 2 на длине волны 10,6 мкм.

5.8. При осуществлении контроля уровни лазерного излучения могут определяться также расчетным путем без проведения измерений.

а) Максимальная энергетическая экспозиция, которая возникает на оси лазерного пучка на заданном расстоянии, определяется по формуле:

Н e,R - энергетическая экспозиция на расстоянии R ;

Q и - выходная энергия лазерного изделия по паспортным данным, Дж;

Θ 0 - угол расходимости лазерного изделия по паспортным данным, рад;

С - коэффициент, задаваемый в зависимости от того, по какому уровню интенсивности в паспорте дан угол расходимости лазерного излучения (табл. 2).

Таблица 2

Величина коэффициента С в зависимости от уровня интенсивности, при котором определяется угол расходимости Θ 0

Уровень интенсивности

l/е

1/е 2

R - расстояние от источника лазерного излучения до точки наблюдения по ходу пучка, см;

б) При зеркальном отражении излучения расчет проводится по той же формуле (), но получившееся значение энергетической экспозиции умножается на коэффициент отражения поверхности ρ 0 , на которую падает прямой пучок.

в) Для случая диффузного отражения лазерного излучения энергетическая экспедиция в заданной точке рассчитывается по формуле:

Q и - выходная энергия лазерного изделия по паспортным данным, Дж;

ρ 0 - коэффициент отражения поверхности (ρ 0 ≤ 1) на данной длине волны;

R - расстояние от точки падения лазерного пучка на отражающую поверхность до точки наблюдения.

г) Для случая диффузного отражения непрерывного лазерного излучения расчет облученности Е е (Вт×см -2) производится по формуле (), но вместо выходной энергии Q и (Дж) подставляется выходная мощность Р (Вт) лазерного излучения по паспортным данным.

6. Определение времени воздействия лазерного излучения при расчете ПДУ

6.1. Расчет ПДУ лазерного облучения осуществляется в соответствии с действующими Санитарными нормами и правилами устройства и эксплуатации лазеров.

6.2. При расчете ПДУ моноимпульсного лазерного излучения время воздействия принимается равным длительности импульса.

6.3. При расчете ПДУ непрерывного и импульсно-периодического лазерного излучения время воздействия определяется периодом работы в течение рабочего дня, определяемом на основе хронометражных исследований.

6.4. Расчет ПДУ для случайного облучения в диапазоне 0,4 - 1,4 мкм проводится для времени воздействия равное 0,25 с т.е. времени равному рефлекторной реакции глаза.

6.5. При расчете ПДУ лазерного облучения для глаз и кожи с длиной волны 0,18 - 0,4 мкм время воздействия определяется суммарным временем за рабочий день.

7. Гигиеническая оценка результатов дозиметрического контроля

7.1. Результаты измерений или расчетов уровней лазерного излучения сопоставляются со значениями ПДУ облучения рассчитываемыми в соответствии с действующими санитарными нормами и правилами устройства и эксплуатации лазеров и в заключении протокола дается гигиеническая оценка результатов измерений.

7.2. В случае превышения ПДУ в протоколе необходимо указать во сколько раз уровни лазерного излучения превышают ПДУ и дать рекомендации по нормализации условий труда.

Приложение 1

Протокол дозиметрического контроля лазерного излучения

от «___» ______________ 19__ г.

1. Место проведения контроля ________________________________________________

2. Лазерное изделие _________________________________________________________

___________________________________________________________________________

3. Классификация ___________________________________________________________

4. Режим генерации ________________________ 5. Длина волны, мкм _______________

6. Энергия (мощность), Дж (Вт) _______________________________________________

7. Частота импульсов, Гц ____________________ 8. Диаметр пучка, см ______________

9. Длительность импульсов, с ________________ 10. Расходимость, рад _____________

11. Средства защиты _________________________________________________________

___________________________________________________________________________

12. Наличие инструкций по технике безопасности _______________________________

___________________________________________________________________________

13. План и точки контроля:

14. Дозиметр

Точка контроля

Фоновая освещенность, Е , лк

Геометрическая характеристика излучения

Результаты измерений, Дж×см -2 (Вт×см -2)

ПДУ Дж×см -2 (Вт×см -2)

d , см

R , см

Θ , град

α , рад.

16. Заключение _____________________________________________________________

Измерения проводил:

___________________

«___» _________ 19__ г.

Приложение 2

Средства защиты от лазерного излучения

1. Защита персонала от лазерного излучения может быть обеспечена:

применением средств коллективной защиты (СКЗ);

применением средств индивидуальной защиты (СИЗ);

2. Средства коллективной защиты могут быть выполнены в виде специальных экранирующих камер (экранированных стендов), ограждений, экрано-ширм, штор и т.д.

В качестве материалов можно применять непрозрачные негорючие и трудногорючие материалы - металл, гетинакс, текстолит, и др. пластмассы, а также цветные неорганические и органические стекла. Марки стекол, рекомендуемые для применения, приведены в табл. 3.

Таблица 3

Марки стекол

ГОСТ, ОСТ, ТУ

Длина волны, мкм

до 0,4

до 0,51

0,53

0,63

0,69

0,84

1,06

ГОСТ 9411-81Е

ЖС-17

ОС-11

ОС-12

СЗС-22

СЗС-21

СЗС-21

СЗС-21

СЗ

ЖС-18

ОС-12

ОС-13

СЗС-22

СЗС-22

СЗС-22

СЗ

ОС-11

ОС-13

СЗС-24

СЗ

ОС-12

СЗС-25

ОС-13

СЗС-26

ОСТ 3-852-79

ОС-23-1

ОС-23-1

ОС-23-1

ТУ 21-38-220-84

Л-17

Л-17

Л-17

Л-17

Л-17

Л-17

ТУ 21-028446- 032-86

ОЖ

ОЖ

ТУ 6-01-1210-79

СОЖ-182

ССО-113

СОС-112

СОЗ-062

СОЗ-062

СОС-113

СОС-112

СОК-112

СОС-203

СОК-112

СОК-112

СОЗ-062

Примечание : В марках органического стекла последняя цифра указывает толщину материала.

Стекла ЖС (желтые), ОС (оранжевые), СЗС (сине-зеленые) выпускаются Изюмским приборостроительным заводом; стекла ОЖ (оксидно-железистое) - Московским опытным стекольным заводом Государственного института стекла; Л-17 (зеленые) - Государственным институтом стекла; Органические стекла СОЖ (желтые), СОС (оранжевые), СОК (красные), СОЗ (зеленые), СОС (синие) выпускаются НИИ Полимеров г. Дзержинска.

Для изготовления средств защиты от излучения лазеров, работающих в дальней ИК области спектра, допускается применение неорганических и органических стекол. Допускаемая плотность энергии излучения, которая может воздействовать на органическое стекло, не должна превышать 10 Дж×см -2 .

3. В качестве средств индивидуальной защиты от лазерного излучения рекомендуется применять защитные очки. Типы защитных очков и их характеристики приведены в таблице .

Для защиты глаз от излучения лазеров, работающих в ИК диапазоне зоне, временно допускается применение допускается применение защитных очков ЗН62-Л-17.

4. При работе с лазерными изделиями IV класса должна быть обеспечена защита кожи. Временно, до разработки и выпуска специальных средств для защиты рук, разрешается применение хлопчатобумажных перчаток.

Защитные очки

Тип защитных очков

Светофильтры

Область применения, мкм

СЗС-22

импульсное излучение:

ЗН22-72-СЗС-22

(ГОСТ 9411-81Е**)

0,69

ТУ 64-1-3470-84

1,06

непрерывное излучение:

0,63

1,05

Очки защитные закрытые двойные с непрямой вентиляцией

СЭС-22 и ОС-23-1

импульсное излучение:

ЗНД4-72-СЗС22-ОС-23-1

0,53

ТУ 64-1-3470-84

0,69

1,06

непрерывное излучение:

0,63

Очки защитные закрытые с непрямой вентиляцией

Л-17

0,2 - 0,47

0,51 - 0,53

ЗН62-Л-17

0,55 - 1,3

ТУ 64-1-3470-84

0,53

0,63

0,69

1,06