Качественный анализ содержания свинца в биологическом материале. Дробный анализ металлов и перспективы его применения в судебной химии. Определение ионов железа

Свинец ядовит и обладает кумулятивными свойствами (способностью накапливаться в организме). Вследствие этого наличие свинца во всех видах консервов не допускается.

Основные источники попадания свинца в консервы – полуда, содержание свинца в которой ограничивается до 0,04 %, и припой. Наличие в консервируемых продуктах веществ, способных растворять металлы, может привести при длительном хранении консервов к переходу свинца в состав содержимого банки. Содержание свинца в продукте определяют в случае длительного хранения и наличия на внутренней стороне банки наплывов припоя.

Метод основан на получении раствора хлорида свинца после озоления навески продукта, осаждении из раствора сульфидов металлов и определении свинца в насыщенном растворе ацетата натрия в присутствии бихромата калия.

Порядок выполнения анализа: 15 г измельченного продукта помещают в фарфоровую чашку диаметром около 7 см, высушивают на песочной бане или в сушильном шкафу, а затем осторожно обугливают и озоляют на слабом огне или муфельной печи при слабо-красном накаливании стенок муфеля. К золе добавляют 5 мл разбавленной соляной кислоты (соотношение1:1), 1 каплю пероксида водорода и выпаривают на водяной бане досуха. К сухому остатку добавляют 2 мл 10 %-ной соляной кислоты и 3 мл воды, после чего содержимое чашки фильтруют через предварительно смоченный водой фильтр в коническую колбу вместимостью 100 мл. Чашку и фильтр промывают 15 мл дистиллированной воды, собирая промывные воды в ту же колбу. Полученный раствор нагревают до 40-50 ˚С, пропуская через него в течение 40 - 60 минут сероводород через узко оттянутую трубку, доходящую до дна колбы. При этом в осадок выпадают сульфиды свинца, олова, меди. Выпавший осадок сульфидов и серы отделяют центрифугированием в пробирке вместимостью 10 мл. Жидкость сливают, а осадок сульфидов металлов промывают 1 – 2 раза 1%-ным раствором соляной кислоты, насыщенным сероводородом. К промытому осадку сульфидов тотчас же добавляют 5 капель 10 %-ного раствора гидроксида натрия (во избежание окисления сульфида свинца в сульфат, растворимый в щелочах), нагревают на кипящей водяной бане, вводят 10 мл воды и центрифугируют. При большом осадке обработку гидроксидом натрия производят два раза.

К осадку сульфидов свинца и меди добавляют 5 – 10 капель смеси крепкой серной и азотной кислоты, взятых в равных количествах, осторожно нагревают на небольшом пламени горелки до полного удаления паров азотной кислоты и появления белых густых паров триоксида серы. После охлаждения в пробирку добавляют 0,5 –1,5 мл дистиллированной воды и такое же количество этанола. Если после прибавления воды и спирта раствор остается прозрачным, то соли свинца считают необнаруженными. При появлении в растворе мути или выпадения белого осадка сульфат свинца отделяют разбавленным этанолом (соотношение 1:1). К оставшемуся в центрифужной пробирке осадку сульфата свинца добавляют 1 мл насыщенного раствора ацетата натрия, предварительно слабо подкисленного уксусной кислотой, и нагревают на кипящей водяной бане 5 – 10 минут. Затем приливают 1 мл дистиллированной воды, после чего содержимое пробирки фильтруют через маленький фильтр, смоченный дистиллированной водой. Фильтрат собирают в мерный цилиндр вместимостью 10 мл. Пробирку и фильтр промывают несколько раз, небольшими порциями дистиллированной воды, собирая промывные воды в тот же цилиндр. Объем раствора доводят водой до метки и перемешивают. 5 мл раствора из цилиндра переносят в центрифужную пробирку, добавляют 3 капли 5%-ного раствора бихромата калия и перемешивают. Если раствор остается прозрачным в течение 10 мин, считают, что свинец не обнаружен. При наличии свинца в растворе появляется желтая муть (PbCrO4). В этом случае проводят количественное определение свинца.


Для количественного определения свинца определенный объем раствора (0,5 – 2 мл) из цилиндра переносят в плоскодонную пробирку с делениями на 10 мл. В три другие такие же пробирки вносят стандартный раствор с содержанием свинца 0,01; 0,015 и 0,02 мг. В пробирки со стандартным раствором добавляют такое количество насыщенного раствора ацетата натрия, слабо подкисленного уксусной кислотой, чтобы его содержание в испытуемом и стандартном растворах было одинаковым (если для количественного определения свинца берут 1 мл испытуемого раствора, то в пробирки со стандартным раствором свинца добавляют 0,1 мл ацетата натрия). Далее во все четыре пробирки добавляют дистиллированную воду до 10 мл, перемешивают и приливают по 3 капли 5%-ного раствора бихромата калия. Содержимое пробирки хорошо перемешивают и через 10 – 15 минут мутность испытуемого раствора сравнивают с мутностью стандартных растворов.

Х = (а ·10·1000)/V ·15, (6)

где х – содержание свинца в 1 кг продукта, мг;

а – количество свинца в пробирке стандартным раствором, мг;

10 – объем разведения, мл;

V – объем раствора, взятый для сравнения со стандартным раствором, мл; 15 – навеска продукта, г.

Приготовление стандартного раствора нитрата свинца. 160 мг нитрата свинца растворяют в небольшом количестве дистиллированной воды в мерной колбе вместимостью 100 мл, добавляют 1 каплю концентрированной азотной кислоты, перемешивают и доводят объем дистиллированной водой до метки; 1 мл такого раствора содержит 1 мг свинца, 2 мл раствора переносят в мерную колбу вместимостью 100 мл, доводят объем дистиллированной водой до метки. Последний раствор является стандартным. В 1 мл его содержится 0,02 мг свинца.

библиографическое описание:
Дробный анализ металлов и перспективы его применения в судебной химии / Крылова А.Н. // Судебно-медицинская экспертиза. — М., 1958. — №4. — С. 26-30.

html код:
/ Крылова А.Н. // Судебно-медицинская экспертиза. — М., 1958. — №4. — С. 26-30.

код для вставки на форум:
Дробный анализ металлов и перспективы его применения в судебной химии / Крылова А.Н. // Судебно-медицинская экспертиза. — М., 1958. — №4. — С. 26-30.

wiki:
/ Крылова А.Н. // Судебно-медицинская экспертиза. — М., 1958. — №4. — С. 26-30.

Одна из особенностей судебнохимического анализа заключается в том, что при необходимости исследования биологического материала на большую группу веществ различного характера обнаруживается, как правило, одновременно не более 1-2 веществ. Комбинированные отравления двумя или более веществами являются редкостью.

В связи с этим нет необходимости в строго систематическом ходе исследования, основанном на разделении и обязательном отделении одного вещества от другого. И действительно, исследование биологического материала на алкалоиды, барбитураты и другие органические вещества производится в пределах определенных групп, обусловленных способом изолирования, в любой последовательности, без отделения друг от друга, т. е. фактически является дробным.

В то же время исследование на тяжелые металлы и мышьяк до настоящего времени производится в основном по строго систематическому ходу анализа, при котором жидкость, полученная после разрушения биологического материала, подвергается ряду операций, имеющих целью разделить катионы металлов и мышьяка на различные подгруппы и отделить их друг от друга.

Операции разделения на группы и отделения катионов друг от друга трудоемки, требуют много времени и не всегда дают ожидаемый эффект. Из-за явлений соосаждения, пептизации, многочисленных операций фильтрования, промывания и растворения не только не всегда достигается полное разделение, но нередко результаты анализа получаются путанными, а небольшие количества катионов, как правило, теряются.

Сотрудниками Института судебной медицины и кафедры судебной химии Московского фармацевтического института подробно изучен сероводородный метод систематического качественного анализа биологического материала на металлы и мышьяк и показаны ошибки, возникающие при этом.

Так, при определении свинца в ходе анализа теряется до 42%, цинка - до 21% . Марганец обнаруживается по систематическому ходу анализа лишь в очень незначительном количестве, так как основная масса его - до 64%-теряется, соосаждаясь с железом. При определении ряда металлов в биологическом материале систематическим сероводородным методом наблюдается большой разброс в результатах определения: при исследовании на олово определяется от 33 до 76 % его, при определении сурьмы - от 44 до 89%, при определении хрома - от 30 до 70%.

Малые количества катионов металлов и мышьяка, особенно интересующие судебную химию, нередко вообще не удается обнаружить сероводородным методом. Примером этого могут служить ртуть, кадмий, хром и др. Так, менее 1 мг ртути сероводородным методом уже не обнаруживается даже при разрушении биологического материала хлором, при котором летучесть ртути наименьшая. При разрушении же серной и азотной кислотами граница обнаружения ртути лежит еще выше. Граница определения хрома колеблется от 1 до 3 мг. Соосаждаю- щееся с сульфидом кадмия железо настолько маскирует его окраску, что о присутствии 2 мг кадмия уже невозможно судить по этой реакции. Из-за значительного растворения сульфида меди в многосернистом аммонии невозможно полностью отделить медь от мышьяка, олова и сурьмы.

Необходимость во время исследования на металлы и мышьяк работать с дурно пахнущим сероводородом, сильно загрязняющим лабораторный воздух и являющимся ядом,- также одна из отрицательных сторон систематического сероводородного метода.

Уже около 100 лет продолжаются поиски возможности замены классического сероводородного метода.

В последние 25 лет интенсивно развивается новое направление в химическом анализе, имеющее целью найти метод качественного обнаружения, свободный от недостатков сероводородного метода и позволяющий определять каждый катион в присутствии других, т.е. дробным методом.

Над дробными методами много работают Н. А. Тананаев, И. М. Коренман, Ф. И. Тришин, В. Н. Подчайнова и др. Эти методы находят все больше сторонников. В 1950 г. появилось руководство по дробному анализу Н. А. Тананаева 1 .

Дробный метод анализа позволяет избежать многих трудностей, возникающих при классическом сероводородном методе. Особенно привлекают его чувствительность, доказательность и быстрота.

Применение дробного анализа в судебной химии при исследовании трупного материала на металлические яды не только желательно, но в значительной степени облегчает исследование. Как уже указывалось, в трупном материале редко обнаруживается одновременно более одного вещества. Исключением при исследовании на соли тяжелых металлов и мышьяка являются немногие случаи, когда отравление происходит каким-либо сложным соединением, например швейнфуртской зеленью, которая, являясь медной солью мышьяковистой кислоты, содержит одновременно мышьяк и медь.

Присутствие в организме человека металлов как естественной составной части, казалось бы, усложняет разработку дробных методов. Однако среди множества металлов, входящих в состав тканей человека, только железо содержится в значительных количествах, с которыми необходимо считаться при обнаружении того или иного металла.

В области судебной химии разработаны дробные методы обнаружения и определения мышьяка (А. Н. Крылова), ртути (Н. А. Павловская, М. Д. Швайкова и А. А. Васильева), свинца, бария, серебра, сурьмы (А. Н. Крылова), кобальта (Л. Т. Икрамов).

Преимущества дробного метода наглядно видны из таблицы.

Сравнительные данные по обнаружению металлов и мышьяка дробным и систематическим сероводородным методом в биологическом материале

При обнаружении мышьяка дробным методом можно получить ответ уже через 1 час, не считая времени, требующегося для разрушения органических веществ. Обнаружение мышьяка сероводородным методом требует не менее 3 рабочих дней, т. е. 20 рабочих часов. Чувствительность же дробного метода при обнаружении мышьяка настолько велика, что при некотором изменении условий он позволяет обнаруживать даже мышьяк, содержащийся в естественном состоянии.

Обнаружение свинца дробным методом в осадке сульфатов, получающемся после разрушения органических веществ, требует всего 15-20 минут, а исследование этого осадка общепринятым в судебнохимической практике методом сплавления - не менее одного рабочего дня, т. е. не менее 6 часов. Исследование на свинец сероводородным методом после разрушения органических веществ хлором в момент выделения продолжается не менее 2 рабочих дней.

Дробным методом можно обнаружить 0,015 мг свинца в 100 г трупного материала, сплавлением осадка сульфатов после разрушения серной и азотной кислотами -0,5 мг, а после разрушения хлором в момент выделения - только 30 мг свинца. Таким образом, чувствительность дробного метода при обнаружении свинца в трупном материале в первом случае в 33, а во втором случае - в 2000 раз выше.

Обнаружение бария дробным методом также требует всего 20 минут вместо 6 часов при исследовании сплавлением по общепринятой методике. Этот метод позволяет обнаруживать 0,015 мг бария в 100 г исследуемого объекта.

Исследование на серебро дробным методом дает возможность получить ответ уже через 2-3 часа, в то время как при исследовании сероводородным методом ответ получают только через 2 дня. Дробным методом можно обнаружить 0,05 мг серебра в 100 г трупного материала.

В последнее время закончена работа над дробными методами определения сурьмы и кобальта.

На обнаружение сурьмы по систематическому ходу анализа необходимо затратить не менее 3 рабочих дней, т. е. 20 рабочих часов. Предлагаемый нами дробный метод обнаружения сурьмы дает возможность получить ответ в течение 10 минут. Если по систематическому ходу анализа можно обнаружить 1 мг сурьмы в 100 г объекта, то дробным методом возможно найти 0,1 мг ее.

Кобальт не входит в обязательный перечень ядов, подлежащих судебнохимическому анализу, поэтому разработка дробного метода, позволяющего производить исследование на кобальт независимо от общего хода анализа, очень полезна. При этом методе исследование заканчивается в течение 2-3 часов и можно обнаружить 0,1 мг кобальта в 100 г объекта.

Особенно наглядно видно преимущество дробного метода на примере ртути. Будучи очень летучим металлом, ртуть доставила немало затруднений судебным химикам. Вопросам обнаружения ее при исследовании трупного материала посвящено много работ. При исследовании сероводородным методом границей обнаружения является 1 мг ртути в 100 г трупного материала. В то же время ртуть нередко остается в небольших количествах в органах погибших от отравления ею. Кроме того, из-за летучести она теряется еще в процессе разрушения органического вещества. При разрушении серной и азотной кислотами потери могут достигать в общей сложности 98%.

Попытки повысить чувствительность метода обнаружения ртути шли в основном по пути дробного анализа. В начале 1900-х годов А. В. Степанов предложил частный метод исследования ртути в моче; фактически же этот метод является дробным. Далее А. Ф. Рубцов, а затем М. Д. Швайкова, А. А. Васильева и Н. А. Павловская подробно изучали вопрос о дробном обнаружении ртути в трупном материале. В настоящее время А. А. Васильевой разработана методика дробного обнаружения ртути, отличающаяся быстротой и высокой чувствительностью- она позволяет определять 0,01 мг ртути в 100 г трупного материала, т. е. чувствительность обнаружения ртути повысилась в 100 раз. Время исследования при этом сократилось втрое по сравнению с сероводородным методом.

Для каждого из вышеназванных ионов разработана также методика количественного определения, позволяющая производить анализ без предварительного отделения. При этом результаты определения получаются вполне удовлетворительные. Серебро, свинец, барий и мышьяк определяются в трупном материале в пределах от 74 до 100%, а ртуть по последнему методу - до 100%.

Возможность успешного проведения анализа в случае необходимости исследования объекта весом 10-25 г, а также быстрота ответа, особенно при частных заданиях, делает дробный анализ особенно ценным для судебнохимических целей.

Доказательность дробных методов, предложенных для судебнохимических исследований, также во многих случаях значительно выше, так как, кроме применения специфических реакций для выделения того или иного иона, при разработке дробных реакций широко используется комплексообразование и избирательное извлечение органическими растворителями, что дает возможность чрезвычайно быстро и эффективно устранять влияние посторонних ионов. А применение для последующих подтверждающих реакций наиболее специфических микрокристаллических реакций еще более повышает доказательность дробных методов.

В связи с сокращением количества операций при данном анализе по сравнению с систематическим сероводородным методом применение дробного метода позволит значительно экономить не только время, но и реактивы. Кроме того, он дает возможность изъять из употребления в лабораториях вредный для здоровья сероводород, сильно загрязняющий воздух.

Бесспорное преимущество дробного метода ясно видно уже на этих немногих примерах.

Дальнейшая работа над дробными методами в судебнохимическом анализе позволит окончательно оставить систематический сероводородный метод, что даст возможность не только повысить чувствительность и доказательность обнаружения катионов, но и значительно сократить срок анализа на металлы и мышьяк (возможно, до 3 рабочих дней, включая и время, необходимое для разрушения органических веществ). Последнее обстоятельство особенно важно, потому что судебнохими- ческие исследования недопустимо длительны: чтобы дать ответ при исследовании на металлы и мышьяк некоторые лаборатории затрачивают не менее 2 недель. Даж е при применении наиболее быстрого метода разрушения серной и азотной кислотами на полный анализ металлов затрачивается не менее 8-10 дней. Это не только не удовлетворяет требованиям следственных органов, но и не соответствует тем возможностям, которые предоставляет современный уровень развития аналитической химии.

Выводы

  1. Применяемый в настоящее время в судебнохимической практике систематический сероводородный метод анализа катионов металлов и мышьяка устарел.
  2. Разрабатываемый в настоящее время дробный метод анализа катионов металлов и мышьяка дает возможность сократить сроки судебнохимического анализа в 2-3 раза по сравнению с сероводородным методом, повысить чувствительность в некоторых случаях в 100 и даже в 2000 раз, повысить доказательность обнаружения металлов и мышьяка, а также значительно сократить расход реактивов и отказаться от применения сероводорода, загрязняющего воздух лабораторий.

1 Тананаев Н. А. Дробный анализ. М., 1950.

Башурова Мария

В данной работе рассмотрена одна из главных экологических проблем нашего времени: загрязнение окружающей среды одним из тяжелых металлов – свинцом. За последние года чаще всего фиксируются отравления соединениями именно этого металла.

Здесь впервые рассчитано количество выбрасываемых соединений свинца автомобильным транспортом для п.Новоорловск. В результате качественных реакций соединения свинца обнаружены в окружающей среде п.Новоорловск.

А также выявлены главные источники загрязнений соединениями свинца в п.Новоорловск.

Скачать:

Предварительный просмотр:

Научно-практическая конференция «Шаг в будущее»

Изучение содержания

соединений свинца

В окружающей среде п.Новоорловск

Выполнила: Башурова Мария Викторовна

ученица 10 класса МОУ «Новоорловская средняя

общеобразовательная школа».

Руководитель: Гордеева Валентина Сергеевна

учитель химии МОУ «Новоорловская средняя

общеобразовательная школа».

Российская Федерация

Забайкальский край, Агинский район, пгт.Новоорловск

2010

Введение

1.1 Характеристика и применение свинца и его соединений.

1.2 Источники загрязнения соединениями свинца.

Глава 2. Изучение содержания соединений свинца в окружающей среде п.Новоорловск.

2.1. Методики исследований.

2.3. Выводы по результатам исследований.

Заключение.

Библиографический список.

Приложения.

Башурова Мария

Введение.

Роль металлов в развитии и становлении технической культуры человечества исключительно велика. Исторически сложившиеся названия «Бронзовый век», «Железный век» говорят о сильном влиянии металлов и их сплавов на все направления развития производства. И в нашей повседневной практике мы ежеминутно сталкиваемся с металлами. И в нас самих есть металлы. Они используются для осуществления различных процессов в организме. Но не всегда металлы являются необходимыми. Многие из них даже являются для организма опасными. Так, например, некоторые металлы чрезвычайно токсичны для позвоночных уже в малых дозах (ртуть, свинец, кадмий, таллий), другие вызывают токсические эффекты в больших дозах, хотя и являются микроэлементами (например, медь, цинк). У беспозвоночных животных, имеющих твердые покровы, свинец в наибольшей степени концентрируется в них. У позвоночных животных свинец в наибольшей степени накапливается в костной ткани, у рыб - в гонадах, у птиц - в перьях, у млекопитающих - в головном мозге и печени.

Свинец - металл, который при контактах с кожей и при попадании в организм вызывает наибольшее количество тяжелейших заболеваний, поэтому по степени воздействия на живые организмы свинец отнесен к классу высокоопасных веществ наряду с мышьяком, кадмием, ртутью, селеном, цинком, фтором и бензапреном (ГОСТ 3778-98).

Огромное влияние на загрязнение окружающей среды свинцом оказывают автомобили со свинцовыми аккумуляторами. Выхлопные газы являются важнейшим источником свинца. Увеличение свинца в почве, как правило, ведет к его накоплению растениями. Многие данные свидетельствуют о резком возрастании содержания свинца в растениях, выросших по краям автострад. Загрязнение вод свинцом вызывают сточные воды предприятий, содержащие в токсичных количествах соли свинца, а также свинцовые трубы. Токсические вещества, содержащиеся в водах, весьма опасны для человека, так как активно накапливаются в пищевых цепях.

По данным аналитического агентства «Автостат» в России в 2009г. приблизительно насчитывается 41,2 млн. автомобилей. Состав парка автомобилей по видам используемого топлива следующий: количество автомобилей, использующих газ в виде топлива, не превышает 2%. Остальные автомобили используют дизельное топливо – 37% или «освинцованный» бензин – 61%.

Одной из важных проблем любого региона является загрязнение почвы, воды, воздуха тяжёлыми металлами.

При проведении данного исследования мы выдвинули гипотезу , что в окружающей среде п.Новоорловск присутствуют соединения свинца.

Объект исследования – загрязнения соединениями свинца окружающей среды.

Предмет исследования – автомобильная трасса и автомобили, проезжающие по ней; почва; снег; растения.

Цель исследования: изучить содержание соединений свинца, выбрасываемых в воздух; накапливаемых в почве, растениях, снеге.

Для реализации поставленной цели мы решали следующие задачи:

1. Изучить научную литературу и Интернет-сайты по поставленной цели исследования.

2. Провести качественный анализ проб почвы, снега и растений на содержание соединений свинца.

3. Выяснить уровень загрязнённости соединениями свинца окружающей среды данной местности.

4. Определить количество выбрасываемых соединений свинца автотранспортом.

5. Определить основные источники загрязнения соединениями свинца на данной территории.

Научная новизна . В результате работы проведен качественный анализ на содержание соединений свинца проб почвы, снега и растений, взятых из окружающей среды поселка Новоорловск. Определено количество выбрасываемых соединений свинца автотранспортом. Определены основные источники загрязнения соединениями свинца на данной территории.
Практическая значимость работы. Изучены методы выявления содержания соединений свинца в почве, снеге, растениях, которыми можно пользоваться. Установлено, что соединения свинца содержатся вблизи основных источников загрязнения. Определено в ходе исследований, что основными источниками загрязнения соединениями свинца является автотрасса, Центральная котельная, ЗАО «Новоорловский ГОК».

«Изучение содержания соединений свинца в окружающей среде поселка Новоорловск»

Башурова Мария

Российская Федерация, Забайкальский край, Агинский район, пгт.Новоорловск

МОУ «Новоорловская средняя общеобразовательная школа», 10 класс

Глава 1. Загрязнения окружающей среды соединениями свинца.

1.1. Характеристика и применение свинца и его соединений.

Свинец - Pb (Plumbum), порядковый номер 82, атомный вес 207,21. Этот голубовато-серый металл знаком с незапамятных времен. Происхождение названия «свинец» - от слова «вино» - связано с применением этого металла при изготовлении сосудов для хранения вина. Ряд экспертов считает, что свинец сыграл решающую роль в падении Римской империи. В древние времена вода стекала с покрытых свинцом крыш по свинцовым желобам в покрытые свинцом бочки. При изготовлении вина пользовались свинцовыми котлами. В большинстве мазей, косметических средств и красок присутствовал свинец. Все это, возможно, привело к снижению рождаемости и появлению психических расстройств в среде аристократов.

Он ковок, мягок. Даже ноготь оставляет на нём след. Плавится свинец при температуре 327,4 градуса. На воздухе он быстро покрывается слоем окиси. В наши дни свинец переживает « вторую молодость». Его главные потребители – кабельная и аккумуляторная промышленность, где он идёт на изготовление оболочек и пластин. Из него делают кожухи башен, змеевики холодильников и другую аппаратуру на сернокислых заводах. Он незаменим при изготовлении подшипников (баббит), типографского сплава (гарта) и некоторых сортов стекла. Из соединений свинца наибольшее практическое значение имеют нитрат свинца Pb(NО 3 ) 2 , который применяют в пиротехнике – при изготовлении осветительных, зажигательных, сигнальных и дымовых составов; дигидроксокарбонат свинца – Pb 3 (OH) 2 (CO 3 ) 2 – используется для приготовления высококачественной краски – свинцовых белил. Правда у неё есть небольшой изъян: под действием сероводорода она постепенно тускнеет. Поэтому-то такими тёмными становятся старинные картины, написанные масляными красками. В больших количествах выпускается сурик (Pb 3 O 4 ) – вещество ярко-красного цвета, из которого получают обыкновенную масляную краску. Также для приготовления красок широко используется свинцовый пигмент хромат свинца PbCrO 4 («желтый крон»). Исходным продуктом для получения соединений свинца является ацетат свинца Pb 3 (СН 3 COО) 2 . Хотя его соединение ядовито, но его 2%-ный раствор используют в медицине для примочек воспаленных поверхностях тела, так как он обладает вяжущими и болеутоляющими свойствами. Самыми высоко токсичными свойствами обладают алкилированные соединения, в частности, тетраэтилсвинец (С 2 Н 5 ) 4 Pb и тетраметилсвинец (СН 3 ) 4 Pb – это летучие ядовитые жидкие вещества. Тетраэтилсвинец (ТЭС) – антидетонатор для моторного топлива, поэтому его добавляют в бензин.

1.2. Источники загрязнения соединениями свинца.

Свинец попадает в воду различными путями. В свинцовых трубах и других местах, где возможен контакт этого металла с водой и кислородом воздуха, протекают процессы окисления: 2Pb+O 2 +2H 2 O→2Pb(OH) 2 .

В подщелоченной воде свинец может накапливаться в значительных концентрациях, образуя плюмбиты: Pb(OH) 2 +2OHֿ→PbO 2 ²ֿ+2H 2 O.

Если в воде присутствует СО 2 , то это приводит к образованию довольно хорошо растворимого гидрокарбоната свинца: 2Pb+O 2 →2PbO, PbO+CO 2 →Pb CO 3 , PbCO 3 +H 2 O+CO 2 →Pb(HCO 3 ) 2 .

Также в воду свинец может попадать из загрязненных им почв, а также путем прямых сбросов отходов в реки и моря. Существует проблема загрязнения питьевых вод в районах расположения плавильных заводов или мест складирования промышленных отходов с высоким содержанием свинца.

Наиболее высокие концентрации свинца обнаруживаются в почве вдоль автотрассы, а также где расположены металлургические предприятия или предприятия по производству свинецсодержащих аккумуляторов или стекла.

Автомобильный транспорт, который работает на жидком топливе (бензине, дизельном топливе и керосине), теплоэлектроцентрали (ТЭЦ) и теплоэлектростанции (ТЭС) представляют собой один из основных источников загрязнения воздуха. В выхлопных выбросах автомобилей содержатся тяжёлые металлы, в том числе свинец. Более высокие концентрации свинца в атмосферном воздухе городов с крупными промышленными предприятиями.

В организм человека большая часть свинца поступает с продуктами питания. Наиболее высокие уровни содержания свинца отмечаются в консервах в жестяной таре, рыбе свежей и мороженной, пшеничных отрубях, желатине, моллюсках и ракообразных. Высокое содержание свинца наблюдается в корнеплодах и других растительных продуктах, выращенных на землях вблизи промышленных районов и вдоль дорог. Питьевая вода, атмосферный воздух, курение – тоже источники поступления соединений свинца в организм человека.

1.3. Последствия поступления соединений свинца в организм человека.

В 1924 году в США, когда для производства бензина потребовался в больших количествах ТЭС, на заводах, где его синтезировали начались несчастные случаи. Было зарегистрировано 138 отравлений, из которых 13 кончились смертельным исходом. Это было первое зарегистрированное свинцовое отравление.

Как и радиация, свинец является кумулятивным ядом. Попадая в тело, он накапливается в костях, печени и почках. Явными симптомами свинцового отравления являются: сильная слабость, спазмы в брюшной области и параличи. Бессимптомным, но также опасным является постоянное присутствие свинца в крови. Он влияет на образование гемоглобина и вызывает анемию. Возможно появление нарушений психики.

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

Отравление свинцом (сатурнизм) – представляет собой пример наиболее частого заболевания, обусловленного воздействием окружающей среды. В большинстве случаев речь идет о поглощении малых доз и накопление их в организме, пока его концентрация не достигнет критического уровня необходимого для токсического проявления.
Органами - мишенями при отравлении свинцом являются кроветворная и нервная системы, почки. Менее значительный ущерб сатурнизм наносит желудочно-кишечному тракту. Один из основных признаков болезни - анемия. На уровне нервной системы отмечается поражение головного мозга и периферических нервов. Интоксикация свинцом может быть, по большей части предупреждена, особенно у детей. Законы запрещают использовать краски на основе свинца, равно как и его присутствие в них. Соблюдение этих законов может хоть частично решить проблему этих “тихих эпидемий”. Общепринятой является следующая классификация свинцовых отравлений, утвержденная МЗ РФ:

1. Носительство свинца (при наличии свинца в моче и отсутствии симптомов отравления).

2. Легкое свинцовое отравление.

3. Свинцовые отравления средней тяжести: а) анемия (гемоглобин ниже 60 % -до 50 %); б) нерезко выраженная свинцовая колика; в) токсический гепатит.

4. Тяжелое свинцовое отравление: а) анемия (гемоглобин ниже 50%); б) свинцовая колика (выраженная форма); в) свинцовые параличи.

При лечении свинцовых отравлений используют такие препараты, как тетацин и пентацин. (Приложение 1) Также необходимы профилактические меры. (Приложение 2)

Глава 2. Изучение содержания соединений свинца в окружающей среде п.Новоорловск

2.1. Методики исследований.

Для расчета количества вредных выбросов автотранспортом за 1 час мы использовали методику, утвержденную приказом Госкомэкологии России № 66 от 16 февраля 1999 года .

  1. На автомобильной трассе определить участок дороги протяженностью в 100м.
  1. Рассчитайте общий путь (S), пройденный всеми машинами за 1 час: S = N*100м.
  2. Взяв измерения выбросов автомобилями на 1 км, вычислить сколько выбросов соединений свинца дали автомобили за 1 час.
  3. Рассчитайте примерное количество соединений свинца, выбрасываемых за 1 час на общем пройденном пути.

Для определения содержания соединений свинца на поверхности земли (в снеге) мы использовали методику из школьного практикума .

  1. Для взятия пробы потребуется посуда ёмкостью не менее 250 мл.
  2. Ёмкость погружается в снег с открытым концом, стараясь достичь его нижнего слоя.
  3. Проба вынимается и доставляется в лабораторию для растаивания.
  4. От каждой пробы отливается по 100 мл жидкости и фильтруется.
  5. В опытные пробирки отливается по 1 мл талой воды из каждой пробы и добавляется по 1 мл раствора КI и 1 мл 6% HNO 3 .
  6. Определяются изменения в пробирках.

Для определения содержания соединений свинца в почве мы использовали методику из школьного практикума :

  1. Делается забор проб почвы.
  2. Почва подсушивается в течении 5 дней.
  3. Из каждой пробы делаются навески по 10 мг и помещаются в пробирки.
  4. В каждую пробирку добавляется по 10 мл дистиллированной воды.
  5. Содержимое пробирок в течении 10 минут перемешивать и оставить на сутки.

6. Через сутки в опытные пробирки добавить по 1 мл KI и HNO 3 и отметить изменения.

Для определения содержания соединений свинца в растениях мы использовали методику из школьного практикума :

  1. Отбирается по 50 штук листьев или 50 г травы.
  2. Растительный материал подсушивается и измельчается.
  3. Растительная масса помещается в пробирки, заливается 20 мл дистиллированной воды и оставляется на сутки.

4. Через сутки добавляется по 1 мл KI и HNO 3

5. Отметить изменения.

2.2. Результаты исследований.

Исследования проводились в летнее и осеннее время 2010 года.

Для расчета количества вредных выбросов автотранспортом за 1 час была выбрана автомобильная трасса, проходящая в центре поселка Новоорловск. В результате этих расчетов мы получили, что за 1 час выбрасывается 0,644г соединений свинца в воздух (Приложение 3).

Для определения содержания соединений свинца в окружающей среде мы брали по пять проб на поверхности почвы (в снеге), в почве, в растениях на определенных участках: 1. Дорога возле школы 2. Центральная котельная 3. ЗАО «Новоорловский ГОК» 4. Лес 5. Дорога вдоль дачного кооператива. Мы оценивали уровень загрязненности соединениями свинца по степени окрашенности осадка: интенсивный желтый – сильный уровень загрязненности; желтоватый – средний уровень; нет желтого осадка – слабый уровень.

В ходе изучения содержания соединений свинца на поверхности почвы (в снеге) было установлено, что на обочине дороги возле школы, Центральной котельной и ЗАО «Новоорловский ГОК» самый высокий уровень соединений свинца. Это видно по ярко жёлтому осадку, который был получен в ходе эксперимента и являлся качественным показателем содержания свинца. (Приложение 4)

При изучении содержания соединений свинца в почве выяснилось, что высокий уровень загрязненности соединениями свинца на обочине дороги возле школы и ЗАО «Новоорловский ГОК». (Приложение 5)

Анализ растительной массы показал, что растения, растущие возле Центральной котельной, ЗАО «Новоорловский ГОК» и дороги вдоль дачного кооператива, накапливают в своих тканях наибольшее количество соединений свинца. (Приложение 6)

Самый низкий показатель уровня загрязненности соединениями свинца поверхности почвы (снега), почвы и растений мы получили в пробах, взятых в лесу.

Все полученные нами результаты были доведены до населения в виде бюллетеней и листовок об опасности загрязнений соединениями свинца. (Приложение 7,8)

2.3. Выводы.

  1. Экспериментальные данные подтвердили, что источником соединений свинца в нашем поселке является центральная автомобильная дорога, а также ЗАО «Новоорловский ГОК» и котельная.
  2. Соединения свинца обнаружены на поверхности почвы (снеге), в почве и в растениях.

3. В результате расчетов количества вредных выбросов автотранспортом мы получили, что за 1 час выбрасывается 0,644г соединений свинца в воздух.

4. Соединения свинца для человека – причина многих серьезных заболеваний.

«Изучение содержания соединений свинца в окружающей среде поселка Новоорловск»

Башурова Мария

Российская Федерация, Забайкальский край, Агинский район, пгт.Новоорловск

МОУ «Новоорловская средняя общеобразовательная школа», 10 класс

Заключение.

Данная работа показывает, что автомобильная трасса и машины проезжающие по ней могут стать довольно сильным источником тяжелых металлов в окружающей среде. Свинец из бензина попадает в выхлопные газы, а затем в атмосферу. Уровень загрязнённости будет зависеть и от транспортной нагрузки автодороги. Так как почва и растения возле дороги сильно загрязнены свинцом, то использовать землю под выращивание сельскохозяйственной продукции и выпаса скота нельзя, а растения - для корма сельскохозяйственных животных.

В результате работы проведен качественный анализ на содержание соединений свинца проб почвы, снега и растений, взятых из окружающей среды поселка Новоорловск. Определено количество выбрасываемых соединений свинца автотранспортом.

Необходима просветительская работа среди местного населения, особенно владельцев дачных участков, вплотную подходящих к трассе.

Нами были разработаны информационные бюллетени и листовки, в которых даны рекомендации по уменьшению воздействия трассы на огороды:

  1. По возможности удалить свой участок от источника загрязнения путём не использования земли непосредственно прилегающей к трассе.
  2. Не использовать землю на участке засадить растениями высотой более 1 метра (кукуруза, укроп и т. п.)
  3. В дальнейшем эти растения убрать с огорода, не используя их.

Список используемых источников:

1. Вишневский Л.Д. Под знаком углерода: Элементы IV группы периодической системы Д.И. Менделеева. М.: Просвещение, 1983.-176с.

2. Лебедев Ю.А. Второе дыхание марафонца (О свинце). М.: Металлургия, 1984 – 120с.

3. Мансурова С.Е. Школьный практикум «Следим за окружающей средой нашего города». М.: Владос, 2001.-111с.

4. Некрасов Б.В. Основы общей химии. Том 2. М.: Издательство «Химия», 1969 – 400с.

5. Никитин М.К. Химия в реставрации. Л.: Химия, 1990. – 304с.

6. Николаев Л.А. Металлы в живых организмах. М.: Просвещение, 1986. – 127с.

7. Петряков-Соколов И.В. Популярная библиотека химических элементов. Том 2. М.: Издательство «Наука», 1983. – 574с.

8. Рувинова Э.И. Загрязнения среды свинцом и здоровье детей. «Биология», 1998 №8 (февраль).

9. Сумаков Ю.Г. Живые приборы. М.: Знание, 1986. – 176с.

10. Сударкина А.А. Химия в сельском хозяйстве. М.: Просвещение, 1986. – 144с.

11. Шалимов А.И. Набат тревоги нашей: экологические размышления. Л.: Лениздат, 1988. – 175с.

12. Шеннон С. Питание в атомном веке, или как уберечь себе от малых доз радиации. Минск: Издательство «Беларусь», 1991. – 170с.


Подписи к слайдам:

Башурова Мария 10 класс Новоорловская СОШ

Тема работы: ИЗУЧЕНИЕ СОДЕРЖАНИЯ СОЕДИНЕНИЙ СВИНЦА В ОКРУЖАЮЩЕЙ СРЕДЕ п.НОВООРЛОВСК

Источники загрязнений соединений свинца: автомобильные аккумуляторы, выбросы авиационных двигателей, масляные краски на свинцовой основе, удобрения из костной муки, керамические покрытия на фарфоре, дым сигарет, трубы из свинца или со свинцовым покрытием, процесс получения свинца из руды, выхлопные газы, припои, растения, выращенные вблизи автомагистралей

Гипотеза работы: В окружающей среде п.Новоорловск присутствуют соединения свинца.

Цель работы: изучение содержания соединений свинца, выбрасываемых в воздух, накапливаемых в почве, растениях, снеге.

Свинец - Pb (Plumbum) порядковый номер 82 атомный вес 207,21 Этот голубовато-серый металл. Он ковок, мягок. Тпл = 327,4 градуса. На воздухе он быстро покрывается слоем окиси.

Применение свинца: аккумуляторная и кабельная промышленность. Незаменим при изготовлении подшипников, типографского сплава и некоторых сортов стекла.

Соединения свинца: Pb (N О3)2 – нитрат свинца, Pb 3(OH)2(CO 3)2 - дигидроксокарбонат свинца (Pb 3 O 4) – сурик (С2Н5)4 Pb - тетраэтилсвинец (ТЭС) (СН3)4 Pb – тетраметилсвинец

Источники поступления соединений свинца в организм человека: Продукты питания (консервы в жестяной таре, рыба свежая и мороженная, пшеничные отруби, желатин, моллюски и ракообразных.) Питьевая вода Атмосферный воздух Курение

Свинец - кумулятивный яд. Накапливается в костях, печени и почках.

Сатурнизм – свинцовое отравление. Симптомы: сильная слабость, спазмы в брюшной области, параличи, нарушение психики

Наименование группы автомобилей Количество за 20 мин, шт Кол-во за час (N), шт Общий путь, пройденный за час всеми автомобилями, км Выбросы на 1 км одним автомобилем, г/км Выбросы за 1 км всеми автомобилями, г/км Выбросы за общий путь, г/км Легковые 6 18 1,8 0,019 0,342 0,62 Легковые дизельные 2 6 0,6 - - - Грузовые карбюраторные с грузоподъемностью до 3 т 1 3 0,3 0,026 0,078 0,02 Грузовые карбюраторные с грузоподъемностью более 3 т - - - 0,033 - - Автобусы карбюраторные 1 3 0,3 0,041 0,123 0,004 Грузовые дизельные 2 6 0,6 - - - Автобусы дизельные 1 3 0,3 - - - Газобалонные, работающие на сжатом природном газе - - - - - - Всего 13 39 3,9 0,119 0,543 0,644

Участки забора проб: 1. Дорога возле школы 2. Центральная котельная 3. ЗАО «Новоорловский ГОК» 4. Лес 5. Дорога вдоль дачного кооператива.

Содержание соединений свинца на поверхности почвы (в снеге). Номер пробной пробирки Участок забора пробы Наличие осадка Уровень загрязнённости 1 Дорога возле школы Жёлтый осадок Сильный 2 Центральная котельная Желтый осадок Сильный 3 ЗАО «Новоорловский ГОК» Жёлтый осадок Сильный 4 Лес Нет осадка Слабый 5 Дорога вдоль дачного кооператива Желтоватый осадок Средний

Источники соединений свинца в п.Новоорловск: Центральная котельная Автомобильная дорога ЗАО «Новоорловский ГОК»

Свинец опасен для человека!!!

Спасибо за внимание!

Предварительный просмотр:

Приложение 1.

Лечение свинцовых отравлений. При острых отравлениях используются комплексообразователи, среди которых наиболее эффективны тетацин и пентацин при внутривенном введении (6 г препарата на курс лечения в виде 5 % раствора). Применяются также средства, стимулирующие кроветворение: препараты железа, камполон, цианокобаламин, аскорбиновая кислота. Для уменьшения боли при колике рекомендуются теплые ванны, 0,1 % раствор атропина сульфата, 10 % раствор натрия бромида, 0,5 % раствор новокаина, молочная диета. Для уменьшения вегетативно-астенических явлений можно применять внутривенно глюкозу с тиамином и аскорбиновой кислотой, бром, кофеин, хвойные ванны, гальванический воротник. При энцефалопатиях назначают дегидратирующие средства (25 % раствор магния сульфата, 2,4 % раствор эуфиллина, 40 % раствор глюкозы); при полинейропатиях - тиамин, антихолинэстеразные средства, четырехкамерные ванны, массаж, лечебную физкультуру.

Для выведения свинца из депо применяют диатермию печени, внутривенное введение 20 % раствора натрия гипосульфита.

Защитные средства: витамины группы В, витамин С, витамин D, кальций, магний, цинк, пектиновые соединения, альгинат натрия, различные сорта капусты.

Приложение 2.

Профилактика свинцовых отравлений. Основным мероприятием по предупреждению отравлений свинцом является замена его другими, менее токсичными веществами на тех производствах, где он применяется. Например, свинцовые белила заменяют титаново-цинковыми, вместо свинцовых прокладок для насечки напильников применяются прокладки из сплава олова с цинком, свинцовые пасты для отделки кузовов легковых автомобилей заменяются пастой из пластических материалов. При технологических процессах, а также при транспортировке свинца и содержащих свинец материалов обязательно герметичное укрытие источников пылевыделения, оборудование мощной аспирационной вентиляции с очисткой загрязненного пылью и парами свинца воздуха перед выбросом его в атмосферу. Запрещается использование труда женщин и подростков в процессах плавки свинца. Необходимо соблюдение таких мер личной гигиены, как санация полости рта, мытье рук 1 % раствором уксусной кислоты, использование специальной одежды и респираторов, лечебно-профилактическое питание.

Приложение 3.

Результаты проведенной методики

определения выбросов соединений свинца автотранспортом.

Наименование группы автомобилей

Количество за 20 мин, шт

Кол-во за час (N), шт

Общий путь,

пройденный за час всеми автомобилями,

Км

Выбросы на 1 км одним автомобилем, г/км

Выбросы за 1 км всеми автомобилями, г/км

Выбросы за общий путь, г/км

Легковые

0,019

0,342

0,62

Легковые дизельные

Грузовые карбюраторные с грузоподъемностью до 3 т

0,026

0,078

0,02

Грузовые карбюраторные с грузоподъемностью более 3 т

0,033

Автобусы карбюраторные

0,041

0,123

0,004

Грузовые дизельные

Автобусы дизельные

Газобалонные, работающие на сжатом природном газе

Всего

0,119

0,543

0,644

Приложение 4.

Номер пробной пробирки

Участок забора пробы

Наличие осадка

Уровень загрязнённости

Дорога возле школы

Жёлтый осадок

Сильный

Центральная котельная

Желтый осадок

Сильный

ЗАО «Новоорловский ГОК»

Жёлтый осадок

Сильный

Лес

Нет осадка

Слабый

Желтоватый осадок

Средний

Приложение 5.

Номер пробной пробирки

Участок забора пробы

Наличие осадка

Уровень загрязнённости

Дорога возле школы

Жёлтый осадок

Сильный

Центральная котельная

Желтоватый осадок

Средний

ЗАО «Новоорловский ГОК»

Жёлтый осадок

Сильный

Лес

Желтоватый

Слабый

Дорога вдоль дачного кооператива

Желтоватый осадок

Средний

Приложение 6.

Номер пробной пробирки

Участок забора пробы

Наличие осадка

Уровень загрязнённости

Дорога возле школы

Желтоватый осадок

Средний

Центральная котельная

Желтый осадок

Сильный

ЗАО «Новоорловский ГОК»

Жёлтый осадок

Сильный

Лес

Нет осадка

Слабый

Дорога вдоль дачного кооператива

Желтый

Сильный

Муниципальное бюджетное общеобразовательное учреждение

«Рыжковская средняя школа»

Кардымовского района Смоленской области

Конкурс обучающихся общеобразовательных организаций

и организаций дополнительного образования Смоленской области

на лучший экологический проект «Живем на Смоленщине»

Экологический проект

«Комплексный анализ содержания соединений тяжелых металлов

в окружающей среде и их влияние на организмы»



Бирюкова Алина Александровна

Класс: 9

Ф.И.О. руководителя работы:

Баранова Ольга Алексеевна

д. Титково

2017 год

Оглавление

Введение…………………………………………………………………………………….………3

Глава I . Тяжелые металлы ……………………………………………………………….…….. 5

    1. Общие понятия о тяжелых металлах…………………………………………...………….5

      Воздействие тяжелых металлов на живые организмы ……….............................…..…..5

Глава II . Источники поступления соединений тяжелых металлов в окружающую среду и живые организмы …………….……………………………………………………………..…7

2.1. Поступление соединений тяжелых металлов в почву ………………………..………..8

2.2. Поступление соединений тяжелых металлов в водоемы………………………………9

2.3. Поступление соединений тяжелых металлов в атмосферу ………………………….…9

2.4. Поступление соединений тяжелых металлов в живые организмы ……………………10

Глава III . Определение нахождения соединений тяжелых металлов в окружающей среде и их воздействие на живые организмы…………………………………………………….12

3.1. Соединения тяжелых металлов в почве …………………………………………………13

3.1.1. Методика определения нахождения соединений тяжелых металлов в почве…...13

3.1.2. Результаты анализа содержания соединений тяжелых металлов в почве……..…14

3.2. Соединения тяжелых металлов в природных водах………………………….………...14

3.2.1. Методика определения нахождения соединений тяжелых металлов в природных водах ………………………………………………………………………………………..14

3.2.2. Результаты анализа содержания соединений тяжелых металлов в природных водах…………………………………………………………………………………………....14

3.3.Соединения тяжелых металлов в атмосфере……………………………………………15

3.3.1. Методика определения нахождения соединений тяжелых металлов в атмосфере ………………………………………………………………………………………………..15

3.3.2. Результаты анализа содержания соединений тяжелых металлов в атмосфере……………………………………………………………………………………………...16

3.4. Соединения тяжелых металлов и живые организмы……………………………………17

3.4.1. Методика определения воздействия соединений тяжелых металлов на организмы ………………………………………………………………………………………………...17

3.4.2. Результаты определения воздействия соединений тяжелых металлов на живые организмы …………………………………………………………………………………18

Заключение ……………………………………………………...………………………………..20

Список литературы…………………………………………………………………………..…..21

Приложение ……………………………………………………………..……………………….22

Введение

Окружающая среда является местом обитания живых организмов, которые находятся в контакте с ней всю свою жизнь. Организмы получают из окружающей среды все самое необходимое для нормальной жизнедеятельности: кислород для дыхания, воду, питательные вещества, микроэлементы и многое другое. Среди химических элементов, поступающих в организмы, особое место занимают тяжелые металлы в форме ионов.

Установлено, что ионы тяжелых металлов в норме присутствуют в окружающей среде вследствие поступления их из природных соединений, но естественное содержание их крайне мало. В последнее же время воздействие человека на окружающую среду возрастает, и теперь источником соединений тяжелых металлов выступает еще и деятельность человека (металлургическое производство, автотранспорт, удобрения), причем ионов тяжелых металлов антропогенного происхождения в окружающей среде с каждым годом становится все больше. Следовательно, и в организмы эти ионы будут поступать в большем количестве.

Работает ли здесь правило «чем больше, тем лучше»? Все знают, что в живых организмах присутствуют металлы, в том числе и тяжелые: например, железо в составе гемоглобина, цинк в составе инсулина и многих ферментов, медь нужна для формирования нервной ткани и в процессах кроветворения, а молибден активизирует процессы связывания атмосферного азота клубеньковыми бактериями. Но эти и многие другие химические элементы – тяжелые металлы требуются живым организмам для нормальной жизнедеятельности в довольно малых количествах, тогда как некоторые из тяжелых металлов даже в микроколичествах оказывают отравляющее воздействие, являясь сильнейшими металлами-токсикантами (ртуть, свинец, кадмий).

Действительно ли деятельность человека – мощный источник поступления соединений тяжелых металлов в окружающую среду, а сами тяжелые металлы негативно воздействуют на живые организмы? Изучению данных вопросов и посвящена работа.

В начале работы была выдвинута гипотеза: соединения тяжелых металлов присутствуют в окружающей среде района исследования (сельская местность), содержание соединений тяжелых металлов тем выше, чем ближе территория отбора проб к автомобильной дороге; соединения тяжелых металлов оказывают угнетающее воздействие на живые организмы.

Цель: изучение содержания соединений тяжелых металлов в окружающей среде (в воздухе, в почве, в воде) и их воздействие на живые организмы.

Для достижения поставленной цели необходимо решить задачи :

    Изучить научную литературу по данной проблеме.

    Изучить методы определения соединений тяжелых металлов в окружающей среде.

    Провести качественный анализ проб почвы, снега, воды, биологического материала (лишайников) на содержание соединений тяжелых металлов.

    Определить воздействие соединений тяжелых металлов на живые организмы.

    Оценить степень загрязнения окружающей среды соединениями тяжелых металлов в районе исследования.

Объект исследования : загрязнение соединениями тяжелых металлов окружающей среды и живых организмов.

Предмет исследования : почва, снег, вода, живые организмы (лишайники, кресс салат).

Методы исследования:

    Теоретический метод

    Морфометрический метод

    Экспериментальный метод

    Органолептический метод

    Математический метод

Место проведения исследования: деревня Титково Кардымовского района.

Сроки проведения исследования: февраль-март 2017 года.

Глава I . Тяжелые металлы

    1. Общие понятия о тяжелых металлах

Тяжёлые металлы - группа химических элементов со свойствами металлов и значительным атомным весом, больше 40. Известно около сорока различных определений термина тяжелые металлы, и невозможно указать на одно из них, как наиболее принятое. Соответственно, список тяжелых металлов согласно разным определениям будет включать разные элементы.

Термин «тяжелые металлы» чаще всего рассматривается не с химической, а с медицинской и природоохранной точек зрения. Таким образом, при включении в эту категории учитываются не только химические и физические свойства элемента, но и его биологическая активность и токсичность, а также объем использования в хозяйственной деятельности.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см 3 . Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg .

    1. Воздействие тяжелых металлов на живые организмы

Многие тяжёлые металлы , такие как , , , , участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных и человека . С другой стороны, тяжёлые металлы и их соединения могут оказывать вредное воздействие на живые организмы. Притом негативное влияние тяжелых металлов на живые организмы и здоровье человека проявляется не только в прямом воздействии высоких концентраций, но и в отдаленных последствиях, связанных с их кумулятивным эффектом. Соединения тяжелых металлов вызывают ряд заболеваний и общее угнетение процессов жизнедеятельности. Не имеющие полезной роли в биологических процессах металлы, такие как и , определяются как токсичные металлы . В частности свинец, который отнесен к классу высокоопасных веществ наряду с мышьяком, кадмием, ртутью, селеном, цинком, фтором и бензапреном (ГОСТ 3778-98). Некоторые элементы, такие как или , обычно имеющие токсичное влияние на живые организмы, могут быть полезны для некоторых видов.

Глава II . Источники поступления соединений тяжелых металлов

в окружающую среду и живые организмы

Среди загрязнителей биосферы, представляющих наибольший интерес для различных служб контроля ее качества, металлы (в первую очередь тяжелые, то есть имеющие атомный вес больше 40) относятся к числу важнейших. В значительной мере это связано с биологической активностью многих из них.

Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства). Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение. Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных веществ ядовитого газа фосгена). Тяжелые металлы накапливаются в почве, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции - выдувании почв.

Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет. В гумусовой части почвы происходит первичная трансформация попавших в нее соединений .

Тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах. Тяжелые металлы и их соединения, как и другие химические соединения, способны перемещаться и перераспределяться в средах жизни, т.е. мигрировать. Миграция соединений тяжелых металлов происходит в значительной степени в виде органо-минеральной составляющей.

К возможным источникам загрязнения биосферы тяжелыми металлами техногенного происхождения относят предприятия черной и цветной металлургии (аэрозольные выбросы, загрязняющие атмосферу, промышленные стоки, загрязняющие поверхностные воды), машиностроения (гальванические ванны меднения, никелирования, хромирования, кадмирования), заводы по переработке аккумуляторных батарей, автомобильный транспорт.

Кроме антропогенных источников загрязнения среды обитания тяжелыми металлами существуют и другие, естественные, например вулканические извержения: кадмий обнаружили сравнительно недавно в продуктах извержения вулкана Этна на острове Сицилия в Средиземном море. Увеличение концентрации металлов-токсикантов в поверхностных водах некоторых озер может происходить в результате кислотных дождей, приводящих к растворению минералов и пород, омываемых этими озерами. Все эти источники загрязнения вызывают в биосфере или ее составляющих (воздухе, воде, почвах, живых организмах) увеличение содержания металлов-загрязнителей по сравнению с естественным, так называемым фоновым уровнем .

2.1. Поступление соединений тяжелых металлов в почву

Почва является основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы с выбросами промышленных предприятий, а свинец - выхлопными газами автомобилей. Из атмосферы в почву тяжелые металлы попадают чаще всего в форме оксидов, где постепенно растворяются, переходя в гидроксиды, карбонаты или в форму обменных катионов. Почва с лужит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

Продолжительность пребывания загрязняющих компонентов в почве гораздо выше, чем в других частях биосферы, что приводит к изменению состава и свойств почвы как динамической системы и в конечном итоге вызывает нарушение равновесия экологических процессов.

В естественных нормальных условиях все процессы, происходящие в почвах, находятся в равновесии. Изменение состава и свойств почвы может быть вызвано природными явлениями, но наиболее часто в нарушении равновесно состоянию почвы повинен человек:

    атмосферный перенос загрязняющих веществ в виде аэрозолей и пыли (тяжелые металлы);

    неземное загрязнение – отвалы крупнотоннажных производств и выбросы топливно-энергетических комплексов;

    растительный опад. Токсичные элементы в любом состоянии поглощаются листьями или оседают на листовой поверхности. Затем, при опадании листьев, эти соединения попадают в почву .

Определение тяжелых металлов в первую очередь проводят в почвах, расположенных в зонах экологического бедствия, на сельскохозяйственных угодьях, прилегающих к загрязнителям почв тяжелыми металлами, и на полях, предназначенных для выращивания экологически чистой продукции.

Если почвы загрязнены тяжелыми металлами и радионуклидами, то очистить их практически невозможно. Пока известен единственный путь: засеять такие почвы быстрорастущими культурами, дающими большую фитомассу. Такие культуры, извлекающие тяжелые металлы, после созревания подлежат уничтожению. На восстановление загрязненных почв требуются десятки лет.

2.2. Поступление соединений тяжелых металлов в водоемы

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений. Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах.

Тяжелые металлы как микроэлементы постоянно встречаются в естественных водоемах и органах гидробионтов. В зависимости от геохимических условий отмечаются широкие колебания их уровня .

В то же время тяжелые металлы и их соли - широко распространенные промышленные загрязнители. В водоемы они поступают как из естественных источников (горных пород, поверхностных слоев почвы и подземных вод), так и со сточными водами многих промышленных предприятий и атмосферными осадками, которые загрязняются дымовыми выбросами. Например, естественными источниками поступления свинца в поверхностные воды являются процессы растворения эндогенных (галенит) и экзогенных (англезит, церуссит и др.) минералов. Значительное повышение содержания свинца в окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием углей, применением тетраэтилсвинца в качестве антидетонатора в моторном топливе, с выносом в водные объекты со сточными водами рудообогатительных фабрик, некоторых металлургических заводов, химических производств, шахт и т.д.

2.3. Поступление соединений тяжелых металлов в атмосферу

Автомобильный транспорт, который работает на жидком топливе (бензине, дизельном топливе и керосине), теплоэлектроцентрали (ТЭЦ) и теплоэлектростанции (ТЭС) представляют собой один из основных источников загрязнения воздуха. В выхлопных выбросах автомобилей содержатся тяжёлые металлы, в том числе свинец. Более высокие концентрации свинца в атмосферном воздухе городов с крупными промышленными предприятиями.

Поступление тяжелых металлов в атмосферу, % от суммы

Источник

Тяжелый металл

Сd

Общий природный источник

26,3

29,0

4,5

81,0

Антропогенный источник

73,7

71,0

95,5

19,0

2.4. Поступление соединений тяжелых металлов в живые организмы

Растительная пища является основным источником поступления тяжелых металлов в организм человека и животных. По данным с ней поступают 40–80 % тяжелых металлов, и только 20–40 %. - с воздухом и водой. Химический состав растений, как известно, отражает элементный состав почв. Поэтому избыточное накопление тяжелых металлов растениями обусловлено, прежде всего, их высокими концентрациями в почвах. Несмотря на существенную изменчивость различных растений к накоплению тяжелых металлов, биоаккумуляция элементов имеет определенную тенденцию, позволяющую упорядочить их в несколько групп:

1) Cd,Cs, Rb - элементы интенсивного поглощения;

2) Zn, Mo, Cu, Pb, Co, As –средней степени поглощения;

3) Mn, Ni, Cr –слабого поглощения;

4) Se, Fe, Ba, Te - элементы труднодоступные растениям. Другой путь поступления тяжелых металлов в растения - некорневое поглощение из воздушных потоков.

Поступление элементов в растения через листья происходит, главным образом, путем неметаболического проникновения через кутикулу. Тяжелые металлы, поглощенные листьями, могут переносится в другие органы и ткани и включаться в обмен веществ. Свинец и кадмий относятся к высокотоксичным металлам. В придорожных растениях количество свинца резко повышено, оно в 10–100 раз выше по сравнению с растениями, растущими вдали от дорог. Большое количество кадмия обнаруживается в растения, произрастающих поблизости от автодорог. Так, например, в хвое ели обыкновенной, растущей поблизости от автодорог количество кадмия возрастает в 11–17 раз.

Поступление тяжелых металлов в растения может происходить непосредственно из воздуха с оседающей на листья и хвою пылью и транслокации из почвы: доля тяжелых металлов в составе пыли на поверхности листьев вблизи источника составляет в среднем 30% от общего содержания в них тяжелых металлов. В понижениях и с наветренной стороны эта доля может доходить до 60 %. По мере удаления от источника роль атмосферного загрязнения заметно уменьшается .

Глава III . Определение нахождения соединений тяжелых металлов в окружающей среде и их воздействие на живые организмы

Методика определения содержания ионов тяжелых металлов сводится к анализу талой воды, воды из водоема или водных вытяжек с помощью качественных реактивов.

Качественное определение ионов свинца Р b 2+

Йодид калия дает в растворе с ионами свинца характерный осадок йодида свинца желтого цвета

Ход исследования :

В опытные пробирки отливается по 1 мл воды, талой воды или водной вытяжки из каждой пробы и добавляется по 1 мл раствора КI и 1 мл 6% HNO 3. Пробирки с содержимым оставляют на сутки. При наличии ионов свинца выпадает желтый осадок при содержании свинца 60 мкг в пробе. При меньшей концентрации содержимое пробирки окрашивается в желтый цвет :

Р b 2+ + I - = Р b I 2

Качественное определение ионов железа

Общее железо

Роданид аммония NH 4 SCN или калия KSCN образуют в кислой среде с Fe 3+ роданиды железа, окрашенные в кроваво-красный цвет. В зависимости от концентрации роданид-иона могут образовываться комплексы различного состава:

Fe 3+ + SCN - = 2+

Fe 3+ + 2 SCN - = +

Fe 3+ + 3 SCN - = Fe ( SCN ) 3

К 1 мл исследуемой воды прибавить 2-3 капли раствора соляной кислоты и 2- 3 капли раствора реактива.

При содержании железа 0,1 мг/л появляется розовое окрашивание, а при более высоком содержании – красное.

Предельно допустимая концентрация общего железа в воде водоемов и питьевой воде 0,3 мг/л, лимитирующий показатель вредности органолептический.

Железо (II)

Гексацианоферрат (III) калия K 3 [ Fe ( CN ) 6 ] , в кислой среде (рН ~ 3) образует с катионом Fe 2+ осадок турнбулевой сини темно-синего цвета:

3Fe 2+ + 2 3- = Fe 3 2

К 1 мл исследуемой воды добавить 2-3 капли раствора серной кислоты и 2-3 капли раствора реактива.

Железо (III)

Гексацианоферрат (II) калия K 4 [ Fe ( CN ) 6 ] в слабокислой среде с катионом Fe 3+ образует темно-синий осадок берлинской лазури:

4Fe 3+ + 3 4- = Fe 4 3

К 1 мл исследуемой воды прибавить 1-2 капли раствора соляной кислоты и 2 капли раствора реактива .

Для качественного определения ионов свинца и железа использовались следующие оборудование, реактивы и материалы.

Оборудование: весы учебные, разновесы, линейка, штатив с муфтой и лапкой, бюретка с краном, мерная пипетка на 2 мл, химические стаканы на 100 мл и 50 мл, мерный цилиндр на 100 мл, колбы круглые плоскодонные на 250 мл, резиновые пробки, воронки конические, фильтровальная бумага, штатив для пробирок, пробирки, ножницы, шпатель, палочки стеклянные, трубочки стеклянные, чашки Петри.

Реактивы: азотная кислота концентрированная (HNO 3 ), раствор йодида калия (KI ), 6%-ный раствор азотной кислоты (HNO 3 ), пероксид водорода (Н 2 О 2 ), роданид калия (раствор) (KSCN ), серная кислота (раствор) (H 2 SO 4 ), гексацианоферрат (III ) калия ( K 3 [ Fe ( CN ) 6 ]), гексацианоферрат (II ) калия ( K 4 [ Fe ( CN ) 6 ), соляная кислота (раствор) (НС l ), прокипяченная вода.

Материалы: семена кресс-салата, талломы лишайников ксантории настенной (золотянки) и пармелии бороздчатой.

3.1. Соединения тяжелых металлов в почве

3.1.1. Методика определения нахождения соединений тяжелых металлов в почве

    Отобрали образцы почв (приблизительно по 100 г) в двух пунктах: возле автомобильной дороги в непосредственной близости (Приложение, рис. 1), в хвойной лесополосе вдали от дороги (Приложение, рис.2), где произрастают в основном сосны и ели, а также встречаются отдельные лиственные породы.

    Подсушили почву в течение 5 дней.

    Взвесили на предварительно уравновешенных весах по 10 г каждого образца почвы.

    Перенесли навески в круглые плоскодонные колбы с обозначениями (образец почвы, взятой возле дороги – «п дор»; образец почвы, взятой в лесополосе – «п лес»). Налили в каждую колбу по 50 мл прокипяченной воды, добавили по 1 капле концентрированной азотной кислоты HNO 3 , взболтали в течение 5 минут. Оставили на сутки (Приложение, рис.3).

    Почвенные вытяжки отфильтровали в химические стаканы с обозначениями, используя для каждой вытяжки свой фильтр (Приложение, рис. 4).

    Полученные фильтраты использовали для проведения качественного определения содержания ионов свинца и железа в почве по ранее описанной методике.

3.1.2. Результаты анализа содержания соединений тяжелых

металлов в почве

Анализ проб на содержание ионов свинца в почве дал следующие результаты. В пробирке с водной вытяжкой из почвы, взятой возле дороги, явный осадок не выпал, но содержимое пробирки окрасилось в насыщенный золотисто-коричневый цвет, что говорит о довольно значительном содержании ионов свинца в данном образце почвы. В пробирке с водной вытяжкой почвы, взятой в лесополосе ни осадка, ни явного изменения цвета не отмечено (почвенная вытяжка изначально имела слабое бледно-желтое окрашивание, что можно объяснить красящим свойством содержащейся в лесной почве органики) (Приложение, рис.5, 6).

Анализ проб на содержание ионов железа в почве не дал видимых изменений: при добавлении реактивов изменение окрашивания и выпадение осадков не происходило.

3.2. Соединения тяжелых металлов в природных водах

3.2.1. Методика определения нахождения соединений тяжелых металлов в природных водах

1. Провели отбор пробы воды из водоема в чистую емкость (Приложение, рис. 7).

2. Профильтровали образец воды, взятой из озера, в химический стакан, чтобы очистить пробу от механических примесей.

3. Полученный фильтрат использовали для проведения качественного определения содержания ионов свинца и железа в воде озера по ранее описанной методике.

3.2.2. Результаты анализа содержания соединений

тяжелых металлов в природных водах

Анализ проб на содержание ионов свинца в воде дал следующий результат: явного осадка не выпало, но содержимое пробирки окрасилось в едва различимый бледно-желтый цвет (Приложение, рис.8).

Анализ проб на содержание ионов железа в воде не дал видимых результатов: при добавлении реактивов изменение окрашивания и выпадение осадков не происходило.

3.3. Соединения тяжелых металлов в атмосфере

3.3.1. Методика определения нахождения соединений тяжелых металлов в атмосфере

Снежный покров

Снежный покров накапливает в своем составе практически все вещества, поступающие в атмосферу. В связи с этим он обладает рядом свойств, делающих его удобным индикатором загрязнения не только самих атмосферных осадков, но и атмосферного воздуха. При образовании снежного покрова из-за процессов сухого и влажного выпадения примесей концентрация загрязняющих веществ в снегу оказывается на 2-3 порядка выше, чем в атмосферном воздухе. Поэтому анализ проб снега дает результаты с высокой степенью надёжности. При отборе проб с нег нужно брать по всей глубине его отложения в отведенные для этого емкости .

    Взяли посуду для взятия проб снега, сделали обозначения. Пробы снега брали в 3- местах: на обочине автомобильной дороги (Приложение, рис.9), во дворе возле дома (Приложение, рис. 10), в лесополосе (Приложение, рис.11).

    Заполнили емкости снегом.

    Доставили снег в учебный кабинет.

    После того, как снег растаял, профильтровали талую воду с целью удаления механических примесей из образцов (Приложение, рис. 12).

    Полученные фильтраты от трех образцов использовали для проведения качественного определения содержания ионов свинца и железа в снегу (а, значит, и в атмосфере) по ранее описанной методике (Приложение, рис. 13, 14).

Лишайники

Чувствительность лишайников к атмосферному загрязнению отмечена давно. Лишайники способны аккумулировать из окружающей среды элементы в количествах, намного превосходящих их физиологические потребности. Отсутствие специальных органов водо- и газообмена и крайне низкая способность к авторегуляции приводят к высокой степени соответствия химического состава лишайников и окружающей их среды. Это качество определило широкое использование лишайников как аккумулятивных биоиндикаторов загрязнения среды тяжелыми металлами. Установлено, что Co, Ni, Mo, Au присутствуют в лишайниках в тех же концентрациях, что и в высших растениях, а содержание Zn, Cd, Sn, Pb намного выше .

Для качественного определения содержания ионов тяжелых металлов пользовались методикой:

    Сбор лишайников производили с березы повислой (Betula pendula ) и ивы козьей (Salix caprea ) на высоте от 0,5 до 1 метра.

    Образцы лишайников по возможности брались без коры, в случае невозможности отделения таллома от коры срезались вместе с ней.

    Для анализа были собраны талломы лишайников ксантории настенной и пармелии бороздчатой, также проведена визуальная оценка состояния талломов во время сбора.

    Отбор образцов производили в двух местах: на деревьях возле автомобильной дороги (Приложение, рис. 15, 16) и на деревьях, произрастающих в лесополосе (Приложение, рис.17).

    Лишайники одного вида, собранные с одного дерева, помещались в общий пакет с обозначениями (Приложение, рис.18).

    В кабинете взвесили на весах по 25 г талломов лишайников каждого вида из каждой пробы, измельчили их.

    В круглые плоскодонные колбы поместили по две навески талломов лишайников обоих видов (ксантория + пармелия для каждого места отбора пробы), прилили по 50 мл прокипяченной воды в каждую колбу, добавили по 1 капле концентрированной азотной кислоты, взболтали в течение 5 минут, оставили на сутки (Приложение, рис.3).

    Затем профильтровали водную вытяжку, использовали полученные фильтраты для проведения качественного определения содержания ионов свинца и железа в талломах лишайников (а, значит, и в атмосфере) по ранее описанной методике.

3.3.2. Результаты анализа содержания соединений

тяжелых металлов в атмосфере

Снежный покров

Анализ проб на содержание ионов свинца в снеге дал следующие результаты. В пробирке с фильтратом талой воды из снега, взятого на обочине дороги (проба №3), явный осадок не выпал, но содержимое пробирки окрасилось в яркий золотистый цвет, что говорит о значительном содержании ионов свинца в данном образце снега. В пробирке с фильтратом талой воды из снега, взятого в лесополосе вдали от дороги (проба №2), осадок не выпал, содержимое пробирки приобрело слабое бледно-желтое окрашивание. В пробирке с фильтратом талой воды из снега, взятого на заднем дворе возле дома (проба №1), осадок не выпал, содержимое пробирки окрасилось в бледно-желтый цвет (Приложение, рис. 8).

Анализ проб на содержание ионов железа в снеге не дал видимых результатов: при добавлении реактивов изменение окрашивания и выпадение осадков не происходило.

Лишайники

При визуальной оценке состояния талломов лишайников ксантории настенной и пармелии бороздчатой было отмечено некоторое угнетение общего состояния слоевищ лишайников, произрастающих на деревьях возле дороги: слоевища небольших размеров, несколько утолщенные, слабо прослеживается их листоватый характер, слоевища прочно прикреплены к коре деревьев (Приложение, рис.19). Все это свидетельствует о наличии в атмосфере района исследования (придорожная зона) веществ, негативно воздействующих на живые организмы – лишайники.

Анализ проб на содержание ионов свинца в талломах лишайников дал следующие результаты. В пробирке с водной вытяжкой из талломов лишайников, собранных с деревьев возле автомобильной дороги, осадок не выпал, но содержимое пробирки окрасилось в слабо различимый бледно-желтый цвет, что говорит о содержащихся в атмосфере ионах свинца и об их накоплении в талломах лишайников. В пробирке с водной вытяжкой из талломов лишайников, собранных с деревьев в лесополосе вдали от автомобильной дороги, осадок не выпал, изменение цвета отмечено не было (Приложение, рис. 6).

Анализ проб на содержание ионов железа в талломах лишайников не дал видимых результатов: при добавлении реактивов изменение окрашивания и выпадение осадков не происходило.

Общий вывод: анализируя результаты, полученные во всех вариантах опытов (содержание ионов свинца в почве, воде, снеге и лишайниках), делаем заключение, что ионы свинца содержатся в окружающей среде. Притом содержание ионов свинца тем больше, чем ближе территория взятия пробы к местам с высокой активностью деятельности человека (в нашем случае – автомобильная дорога), что, прежде всего, объясняется поступлением ионов свинца в окружающую среду в составе выхлопных газов автотранспорта. Отрицательный результат проб на содержание ионов железа во всех вариантах опытов, скорее всего, связан не с полным отсутствием железа в окружающей среде, а с его очень малым содержанием, которое невозможно определить методами, нами используемыми, и имеющимися в лаборатории реактивами.

3.4. Соединения тяжелых металлов и живые организмы

3.4.1. Методика определения воздействия соединений тяжелых металлов на организмы

В качестве тест-организма мы использовали кресс-салат (Приложение, рис. 20).

Кресс-салат – однолетнее овощное растение, обладающее повышенной чувствительностью к загрязнению почвы тяжелыми металлами, а также к загрязнению воздуха газообразными выбросами автотранспорта. Этот биоиндикатор отличается быстрым прорастанием семян и почти стопроцентной всхожестью.

Кроме того, побеги и корни этого растения под действием загрязнителей подвергаются заметным морфологическим изменениям. Задержка роста и искривление побегов, уменьшение длины и массы корней.

Кресс-салат как биоиндикатор удобен еще и тем, что действие стрессов можно изучать одновременно на большом числе растений при небольшой площади рабочего места. Привлекательны также и весьма короткие сроки эксперимента. Семена кресс- салата прорастают уже на второй – третий день .

Для определения воздействия ионов тяжелых металлов на живые организмы (кресс-салат) нами были взяты образцы талой воды, пробы которых уже были проанализированы на содержание ионов свинца и железа с использованием качественных реактивов.

    На дно чашек Петри поместили круги, вырезанные из фильтровальной бумаги по размеру чашек Петри; чашки Петри пронумеровали.

    В каждую чашку Петри прилили по 3 мл талой воды соответствующего образца (фильтровальная бумага была смочена полностью) (Приложение, рис. 21).

    На фильтровальную бумагу поместили семена кресс-салата (по 20 штук в каждую чашку Петри), накрыли крышками (Приложение, рис. 22, 23).

    Через 3 дня провели морфометрическую оценку проростков салата (измерили длины корешков) (Приложение, рис. 24, 25).

    Данные занесли в таблицу, нашли среднее значение длин корней по каждому варианту, сделали выводы

3.4.2. Результаты определения воздействия соединений

тяжелых металлов на живые организмы

Морфометрические показатели проростков кресс-салата

(длина корешков в мм)

п/п

Проба №1 (снег со двора)

Проба №2 (снег из лесополосы)

Проба №3 (снег с автодороги)

1

45

68

13

2

55

45

25

3

36

59

25

4

47

48

26

5

51

67

31

6

44

54

14

7

56

55

36

8

49

53

21

9

45

52

22

10

44

63

32

11

43

58

23

12

56

73

36

13

34

49

12

14

52

60

32

15

23

61

10

16

57

44

22

17

32

44

12

18

45

-

12

19

36

-

-

20

-

-

-

СРЕДНЕЕ ЗНАЧЕНИЕ

44,74

56,24

22,4

Выводы: ионы свинца, содержащиеся в талой воде, оказывают угнетающее воздействие на процессы жизнедеятельности организмов, негативное воздействие тем больше, чем выше содержание ионов свинца в талой воде. Это следует из полученных результатов. В варианте опыта №3 (дорога) (Приложение, рис.26) явно отмечаются морфометрические изменения: резко уменьшается длина корней – на 20мм и более по средним показателям. Кроме этого всхожесть составила 90%. В вариантах опытов №1(двор) (Приложение, рис. 27) и №2 (лесополоса) (Приложение, рис. 28) всхожесть составила 95% и 85% соответственно. Такой количественный разброс по всхожести в вариантах №1 и №2 может быть связан с общей всхожестью посевного материала (фактор случайности) и относительно малой выборкой. Меньшее значение средней длины корней в варианте №1 в сравнении с вариантом №2 объясняется большим наличием в талой воде ионов свинца. Негативное воздействие ионов свинца на живые организмы в ходе опыта точно установлено.

Заключение

Окружающая среда – дом для живых организмов, она же обеспечивает организмы и всеми веществами, необходимыми для нормальной жизнедеятельности. В то же время живые организмы поглощают из среды обитания не только то, что им необходимо, происходит совместное поглощение целого комплекса веществ и элементов, где некоторые не только не полезны, но и оказывают угнетающее, отравляющее воздействие на организмы, среди таких веществ особое место занимают соединения тяжелых металлов. Но обычно естественный фон тяжелых металлов в окружающей среде бывает довольно низким, следовательно, и негативное воздействие их соединений на растения и животных незначительно.

В последнее же время окружающая среда испытывает очень сильное воздействие со стороны человека, который негативным образом влияет на ее состояние, приводит к сильному загрязнению.

В ходе нашего исследования было установлено, что степень антропогенного воздействия на окружающую среду в области загрязнения ее соединениями тяжелых металлов велико. Ионы тяжелого металла свинца присутствуют в окружающей среде района исследования, причем содержание их возрастает при приближении к территориям с высокой степенью антропогенного воздействия – вблизи автомобильных дорог района исследования. На удалении от автодорог концентрация ионов металлов уменьшается, но, тем не менее, содержание соединений тяжелых металлов будет выше естественного фона, потому что загрязнение распространяется на большие территории с движущимися воздушными массами, с потоками подземных и поверхностных вод, с осадками. Отрицательные пробы на присутствие ионов железа вовсе не означают его отсутствие; в сельской местности источников его поступления в окружающую среду практически нет, поэтому и содержание ионов железа крайне мало для установления его присутствия. Было также установлено, что ионы тяжелых металлов оказывают общее угнетающее воздействие на процессы роста и развития живых организмов при сравнительно низких концентрациях.

Практическая значимость работы заключается в том, что полученные результаты можно использовать: при проведении классных часов, внеклассных мероприятий и занятий, посвященных проблемам экологического состояния окружающей среды (в частности – района исследования); при разработке буклетов на тему «Окружающая среда и проблема ее загрязнения соединениями тяжелых металлов», для информирования населения (в том числе установка знака возле водоема «Ловля рыбы запрещена!»). Практические результаты исследовательской работы могут быть использованы при написании статьи в газету для освещения проблемы загрязнения окружающей среды.

Список литературы

    Ашихмина Т.Я. Школьный экологический мониторинг. Учебно-методическое пособие. М.: АГАР, 2006. 38 с.

    Мансурова С.Е. «Следим за окружающей средой нашего города », М., «Владос», 2001 г.

    Муравьев А.Г., Пугал Н.А., Лаврова В.Н. Экологический практикум: Учебное пособие с комплектом карт-инструкций / Под ред. к.х.н. А.Г. Муравьева. – 2-е изд., испр. – СПб.: Крисмас+, 2012. – 176 с.: ил.

    Тяжелые металлы как фактор экологической опасности: Методические указания к самостоятельной работе по экологии для студентов 3 курса дневной формы обучения / Составитель: Ю.А.Холопов. – Самара: СамГАПС, 2003.

    Приложение

    Рис.1. Отбор пробы почвы с обочины дороги

    Рис.2. Отбор пробы почвы в лесополосе

    Рис.3. Получение водных вытяжек из почвы и из талломов лишайников

    Рис.4. Получение фильтрата почвенной вытяжки

    Рис.5. Фильтраты почвенных вытяжек

    Рис.6. Результаты обнаружения ионов свинца в водных вытяжках из талломов лишайников и из почвы

    Рис.7. Отбор пробы воды из озера

    Рис.8. Результаты обнаружения ионов свинца в талой воде и воде из озера

    Рис.9. Отбор образца снега с обочины дороги

    Рис.10. Отбор образца снега во дворе возле дома

    Рис.11. Отбор образца снега в лесополосе

    Рис.12. Получение фильтрата талой воды

    Рис.13. Отмеривание образца талой воды из бюретки в опытную пробирку

    Рис.14. Отбор нужного количества реактива в мерную пипетку

    Рис.15. Сбор лишайника пармелии бороздчатой возле дороги

    Рис.16. Сбор лишайника ксантории настенной возле дороги

    Рис. 17. Сбор лишайника пармелии бороздчатой в лесополосе

    Рис.18. Собранные образцы талломов лишайников

    Рис.19. Лишайники на стволе березы, произрастающей возле дороги

    Рис.20. Тест-организм – кресс-салат

    Рис.21. Подготовка к посеву семян

    Рис.22. Посев семян кресс-салата

    Рис.23. Семена кресс-салата в чашках Петри

    Рис.24. Измерение длин корней проростков кресс-салата

    Рис.25. Измерение длины корня проростка кресс-салата

    Рис.26. Проростки кресс-салата

    (опытный вариант – снег, взятый возле автодороги)

    Рис.27. Проростки кресс-салата

    (опытный вариант – снег, взятый во дворе дома)

    Рис.28. Проростки кресс-салата

    (опытный вариант – снег, взятый в лесополосе)