Радиосхемы своими руками для дома. Начинающий радиолюбитель: школа, схемы, конструкции Простые схемы для желающих заниматься электроникой

На нашем сайте опубликованы материалы, которые вы найдете для себя не только интересными, но и очень полезными. Этот раздел посвящен «Практическим схемам разных устройств», в нем много справочных материалов, информации для начинающих радиолюбителей и не только, профессионалы также найдут для себя что-нибудь полезное. Ведь люди, которые хотят развиваться, учатся на протяжении всей жизни. Говорят, что невозможно знать все, эту гипотезу подтверждаем и мы, выкладывая все новые и новые материалы, которые освещают науку, электронику и дают постоянно новые знания.

Опытным радиолюбителям предлагаем сотрудничество, они могут делиться своим опытом на страницах нашего сайта с начинающими, то есть еще совсем любителями. Наш сайт будет полезен тем, что участники могут писать комментарии к статьям, обсуждать свои проблемы на форуме, тем самым делиться опытом друг с другом.

В случае, если вы хотите развиваться, но у вас просто мало опыта наш сайт даст вам большую пользу, подача информации не на самом сложном уровне, но, чтобы разобраться в электросхемах разных устройств, познакомиться с описанием принципов их работы, нужно немного и поработать. Поэтому, если вы ленивы и неусидчивы, не хотите поработать, чтобы чего-либо достичь, то проходите мимо, наш сайт не для вас. Кнопки «Хочу все знать» на нашем сайте нет.

Изначальной и первостепенной нашей задачей стоит цель — оправдать надежды наших пользователей. Мы хотим, чтобы вы расширили свои технические знания или укрепили имеющиеся. Они вам обязательно понадобятся, так как для многих хобби — радиолюбительство часто перерастает в вид активного заработка.

Статья обновлена:25.03.2019

В данной статье мы рассмотрим дифференциальный манометр, что это такое, какова его функция, и для чего используется. Дифференциальный манометр — это устройство, которое измеряет разницу давления между двумя местами. Дифференциальные манометры могут варьироваться от устройств, достаточно простых для создания дома, до сложного цифрового оборудования. Функция Стандартные манометры используются для измерения давления в контейнере путем сравнения его …

Статья обновлена:18.02.2019

Статья обновлена:17.02.2019

Статья обновлена:14.02.2019

Статья обновлена:10.02.2019

Статья обновлена:31.01.2019

Статья обновлена:30.01.2019

Статья обновлена:13.11.2018

Навигация по записям

    • Практические схемы разных устройств

Начинающий радиолюбитель: школа начинающего радиолюбителя, схемы и конструкции для начинающих, литература, радиолюбительские программы

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

На сайте работает “Школа начинающего радиолюбителя “. Полный курс обучения включает в себя занятия начиная от азов радиоэлектроники и кончая практическим конструированием радиолюбительских устройств средней сложности исполнения. Каждое занятие строиться на предоставлении слушателям необходимых теоретических сведений и практических видеоматериалов, а также домашних заданий. В ходе учебы каждый обучаемый получит необходимые знания и навыки в полном цикле конструирования в домашних условиях радиоэлектронных устройств.

Для того чтобы стать слушателем школы, необходимо желание и подписка на новости сайта или через FeedBurner, или через стандартное окно подписки. Подписка необходима для своевременного получения новых уроков, видеоматериалов занятий и домашнего задания.

Только подписавшимся на курс обучения в “Школе начинающего радиолюбителя” будут доступны видеоматериалы и домашнии задания по занятиям.

Для тех, кто решил изучать радиолюбительство вместе с нами, необходимо кроме подписки, внимательно изучить подготовительные статьи:






Все вопросы, пожелания и замечания Вы можете оставлять в комментариях в разделе “Начинающим”.

Первое занятие.

Второе занятие.
Лаборатория радиолюбителя. Собираем блок питания.

Определяемся со схемой. Как проверить радиоэлементы.

Подготовка деталей.
Расположение деталей на плате.
Изготовление платы самым простым способом.

Пайка схемы.
Проверка работоспособности.
Изготовление корпуса для блока питания.
Изготовление передней панели с помощью программы “Front Designer”.

Третье занятие.
Лаборатория радиолюбителя. Собираем функциональный генератор.



Проектирование печатной платы с помощью программы “Sprint Layout”.
Применение ЛУТ (лазерно-утюжной технологии) для переноса тонера на плату.

Окончательный вариант платы.
Нанесение “шелкографии”.
Проверка работоспособности генератора.
Настройка генератора с помощью специальной программы “Virtins Multi-Instrument”

Четвертое занятие.
Собираем светомузыкальное устройство на светодиодах

Предисловие.
Определяемся со схемой и изучаем характеристики основных деталей.

Фоторезисты и их применение.
Немного о программе “Cadsoft Eagle”. Установка и русификация официальной версии.

Изучаем программу Cadsoft Eagle:
– начальные настройки программы;
– создание нового проекта, новой библиотеки и нового элемента;
– создание принципиальной схемы устройства и печатной платы.

Уточняем схему;
Изготавливаем печатную плату в программе Cadsoft Eagle;
Облуживаем дорожки платы сплавом “Розе”;
Собираем устройство и проверяем его работоспособность специализированной программой и генератором;
Ну и, в конце-концов, радуемся результатам.

Подведем некоторые итоги работы “Школы”:

Если вы последовательно прошли все шаги, то ваш результат должен быть следующим:

1. Мы узнали:
- что такое закон Ома и изучили 10 основных формул;
– что такое конденсатор, резистор, диод и транзистор.
2. Мы научились:
♦ изготавливать простым способом корпуса для устройств;
♦ залуживать печатные проводники простым способом;
♦ наносить “шелкографию”;
♦ изготавливать печатные платы:
– с помощью шприца и лака;
– с использованием ЛУТ (лазерно-утюжной технологии);
– с использованием текстолита с нанесенным пленочным фоторезистом.
3. Мы изучили:
- программу для создания передних панелей “Front Designer”;
– любительскую программу для налаживания различных устройств “Virtins Multi-Instrument”;
– программу для ручного проектирования печатных плат “Sprint Layout”;
– программу для автоматического проектирования печатных плат “Cadsoft Eagle”.
4. Мы изготовили:
- двухполярный лабораторный блок питания;
– функциональный генератор;
– цветомузыку на светодиодах.
Кроме того, из раздела “Практикум” мы научились:
- собирать простые устройства из подручных материалов;
– рассчитывать токоограничительные резисторы;
– рассчитывать колебательные контуры для радиоустройств;
– рассчитывать делитель напряжения;
– рассчитывать фильтры низких и верхних частот.

В дальнейшем в “Школе” планируется изготовить несложный УКВ радиоприемник и приемник радионаблюдателя. На этом скорее всего работа “Школы” будет закончена. В дальнейшем, основные статьи для начинающих будут публиковаться в разделе “Практикум”.

Кроме того, начат новый раздел по изучению и программированию микроконтроллеров AVR.

Работы начинающих радиолюбителей:

Интигринов Александр Владимирович:

Григорьев Илья Сергеевич:

Ruslan Volkov:

Петров Никит Андреевич:

Морозас Игорь Анатольевич:

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик - он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В - четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора - он достигнет первоначального значения.

Нагрузка усилительного каскада - головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации - резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более "чувствительный” по сравнению с однокаскадным - коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 - в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока - коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 - если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем - около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй - на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй - усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ - при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), - оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада - резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем - HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы - норма - больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один - зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение - вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Сделать своими руками простейшие электронные схемы для использования в быту можно, даже не имея глубоких познаний в электронике. На самом деле на бытовом уровне радио – это очень просто. Знания элементарных законов электротехники (Ома, Кирхгофа), общих принципов работы полупроводниковых устройств, навыков чтения схем, умения работать с электрическим паяльником вполне достаточно, чтобы собрать простейшую схему.

Мастерская радиолюбителя

Какой сложности схему ни пришлось бы выполнять, необходимо иметь минимальный набор материалов и инструментов в своей домашней мастерской:

  • Бокорезы;
  • Пинцет;
  • Припой;
  • Флюс;
  • Монтажные платы;
  • Тестер или мультиметр;
  • Материалы и инструменты для изготовления корпуса прибора.

Не следует приобретать для начала дорогие профессиональные инструменты и приборы. Дорогая паяльная станция или цифровой осциллограф мало помогут начинающему радиолюбителю. В начале творческого пути вполне достаточно простейших приборов, на которых и нужно оттачивать опыт и мастерство.

С чего начинать

Радиосхемы своими руками для дома должны по сложности не превышать того уровня, каким Вы владеете, иначе это будет означать лишь потраченное время и материалы. При недостатке опыта лучше ограничиться простейшими схемами, а по мере накопления навыков усовершенствовать их, заменяя более сложными.

Обычно большинство литературы из области электроника для начинающих радиолюбителей приводит классический пример изготовления простейших приемников. Особенно это относится к классической старой литературе, в которой нет столько принципиальных ошибок по сравнению с современной.

Обратите внимание! Данные схемы были рассчитаны на огромные мощности передающих радиостанций в прошлое время. Сегодня передающие центры используют меньшую мощность для передачи и стараются уйти в диапазон более коротких волн. Не стоит тратить время на попытки сделать рабочий радиоприемник при помощи простейшей схемы.

Радиосхемы для начинающих должны иметь в своем составе максимум пару-тройку активных элементов – транзисторов. Так будет легче разобраться в работе схемы и повысить уровень знаний.

Что можно сделать

Что можно сделать, чтобы и было несложно, и можно было использовать на практике в домашних условиях? Вариантов может быть множество:

  • Квартирный звонок;
  • Переключатель елочных гирлянд;
  • Подсветка для моддинга системного блока компьютера.

Важно! Не следует конструировать устройства, работающие от бытовой сети переменного тока, пока нет достаточного опыта. Это опасно и для жизни, и для окружающих.

Довольно несложные схемы имеют усилители для компьютерных колонок, выполненные на специализированных интегральных микросхемах. Устройства, собранные на их основе, содержат минимальное количество элементов и практически не требуют регулировки.

Часто можно встретить схемы, которые нуждаются в элементарных переделках, усовершенствованиях, которые упрощают изготовление и настройку. Но это должен делать опытный мастер с тем расчетом, чтобы итоговый вариант был более доступен новичку.

На чем выполнять конструкцию

Большинство литературы рекомендует выполнять конструирование простых схем на монтажных платах. В настоящее время с этим совсем просто. Существует большое разнообразие монтажных плат с различными конфигурациями посадочных отверстий и печатных дорожек.

Принцип монтажа заключается в том, что детали устанавливаются на плату в свободные места, а затем нужные выводы соединяются между собой перемычками, как указано на принципиальной схеме.

При должной аккуратности такая плата может послужить основой для множества схем. Мощность паяльника для пайки не должна превышать 25 Вт, тогда риск перегреть радиоэлементы и печатные проводники будет сведен к минимуму.

Припой должен быть легкоплавким, типа ПОС-60, а в качестве флюса лучше всего использовать чистую сосновую канифоль или ее раствор в этиловом спирте.

Радиолюбители высокой квалификации могут сами разработать рисунок печатной платы и выполнить его на фольгированном материале, на котором затем паять радиоэлементы. Разработанная таким образом конструкция будет иметь оптимальные габариты.

Оформление готовой конструкции

Глядя на творения начинающих и опытных мастеров, можно придти к выводу, что сборка и регулировка устройства не всегда являются самым сложным в процессе конструирования. Порой правильно работающее устройство так и остается набором деталей с припаянными проводами, не закрытое никаким корпусом. В настоящее время уже можно не озадачиваться изготовлением корпуса, потому что в продаже можно встретить всевозможные наборы корпусов любых конфигураций и габаритов.

Перед тем, как начинать изготовление понравившейся конструкции, следует полностью продумать все этапы выполнения работы: от наличия инструментов и всех радиоэлементов до варианта выполнения корпуса. Совсем неинтересно будет, если в процессе работы выясниться, что не хватает одного из резисторов, а вариантов замены нет. Работу лучше выполнять под руководством опытного радиолюбителя, а, в крайнем случае, периодически контролировать процесс изготовления на каждом из этапов.

Видео

Раз уж Вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени Вам захочется сделать какой-нибудь полезный электроприбор для дома, автомобиля либо дачи своими руками. Одновременно с этим самоделки могут пригодиться не только в быту, но и изготовлены на продажу, к примеру, . На самом деле процесс сборки простых устройств в домашних условиях не представляет ничего сложного. Нужно всего лишь уметь читать схемы и пользоваться инструментом для радиолюбителей.

Что касается первого момента, то перед тем, как приступать к изготовлению электронных самоделок своими руками, Вам нужно научиться читать электросхемы . В этом случае хорошим помощником будет наш .

Из инструментов для начинающих электриков Вам пригодится паяльник, набор отверток, плоскогубцы и мультиметр . Для сборки некоторых популярных электроприборов может понадобиться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы рассказали даже, и тот же сварочный аппарат.

Отдельное внимание нужно уделить подручных материалам, из которых каждый электрик новичок сможет сделать элементарные электронные самоделки своими руками. Чаще всего в изготовлении простых и полезных электроприборов используются старые отечественные детали: трансформаторы, усилители, провода и т.д. В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче.

Когда все будет готово – инструменты собраны, запчасти подысканы и минимальные знания получены, можно переходить к сборке любительских электронных самоделок в домашних условиях. Тут-то как раз, наш небольшой справочник Вам и поможет. Каждая предоставленная инструкция включает в себя не только подробное описание каждого из этапов создания электроприборов, но и сопровождается фото примерами, схемами, а также видео уроками, в которых наглядно показывается весь процесс изготовления. Если же Вы какой-то момент не поняли, то можете уточнить его под записью в комментариях. Наши специалисты постараются своевременно проконсультировать Вас!